在代价函数中增加拾取次数计算
This commit is contained in:
@ -1,14 +1,16 @@
|
||||
# implementation of <<An integrated allocation method for the PCB assembly line balancing problem with nozzle changes>>
|
||||
import copy
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
from base_optimizer.optimizer_common import *
|
||||
|
||||
|
||||
def selective_initialization(component_points, component_feeders, population_size):
|
||||
population = [] # population initialization
|
||||
|
||||
population = [] # population initialization
|
||||
for _ in range(population_size):
|
||||
individual = []
|
||||
for part_index, points in component_points.items():
|
||||
for part_index, points in component_points:
|
||||
if points == 0:
|
||||
continue
|
||||
# 可用机器数
|
||||
@ -50,7 +52,7 @@ def selective_crossover(component_points, component_feeders, mother, father, non
|
||||
one_counter, feasible_cut_line = 0, []
|
||||
|
||||
idx = 0
|
||||
for part_index, points in component_points.items():
|
||||
for part_index, points in component_points:
|
||||
one_counter = 0
|
||||
|
||||
idx_, mother_cut_line, father_cut_line = 0, [-1], [-1]
|
||||
@ -134,9 +136,10 @@ def selective_crossover(component_points, component_feeders, mother, father, non
|
||||
def cal_individual_val(component_points, component_nozzle, individual):
|
||||
idx, objective_val = 0, []
|
||||
machine_component_points = [[] for _ in range(max_machine_index)]
|
||||
nozzle_component_points = defaultdict(list)
|
||||
|
||||
# decode the component allocation
|
||||
for points in component_points.values():
|
||||
for comp_idx, points in component_points:
|
||||
component_gene = individual[idx: idx + points + max_machine_index - 1]
|
||||
machine_idx, component_counter = 0, 0
|
||||
for gene in component_gene:
|
||||
@ -149,6 +152,11 @@ def cal_individual_val(component_points, component_nozzle, individual):
|
||||
machine_component_points[-1].append(component_counter)
|
||||
idx += (points + max_machine_index - 1)
|
||||
|
||||
nozzle_component_points[component_nozzle[comp_idx]] = [0] * len(component_points) # 初始化元件-吸嘴点数列表
|
||||
|
||||
for comp_idx, points in component_points:
|
||||
nozzle_component_points[component_nozzle[comp_idx]][comp_idx] = points
|
||||
|
||||
for machine_idx in range(max_machine_index):
|
||||
nozzle_points = defaultdict(int)
|
||||
for idx, nozzle in component_nozzle.items():
|
||||
@ -166,6 +174,8 @@ def cal_individual_val(component_points, component_nozzle, individual):
|
||||
total_heads = (1 + ul) * max_head_index - len(nozzle_points)
|
||||
nozzle_heads = defaultdict(int)
|
||||
for nozzle in nozzle_points.keys():
|
||||
if nozzle_points[nozzle] == 0:
|
||||
continue
|
||||
nozzle_heads[nozzle] = math.floor(nozzle_points[nozzle] * 1.0 / machine_points * total_heads)
|
||||
nozzle_heads[nozzle] += 1
|
||||
|
||||
@ -173,7 +183,8 @@ def cal_individual_val(component_points, component_nozzle, individual):
|
||||
for heads in nozzle_heads.values():
|
||||
total_heads -= heads
|
||||
|
||||
for nozzle in sorted(nozzle_heads, key=lambda x: nozzle_points[x] / nozzle_heads[x], reverse=True):
|
||||
while True:
|
||||
nozzle = max(nozzle_heads, key=lambda x: nozzle_points[x] / nozzle_heads[x])
|
||||
if total_heads == 0:
|
||||
break
|
||||
nozzle_heads[nozzle] += 1
|
||||
@ -193,10 +204,38 @@ def cal_individual_val(component_points, component_nozzle, individual):
|
||||
heads_placement[idx][1] += 1
|
||||
heads_placement = sorted(heads_placement, key=lambda x: x[1], reverse=True)
|
||||
|
||||
# the number of pick-up operations
|
||||
# (under the assumption of the number of feeder available for each comp. type is equal 1)
|
||||
pl = 0
|
||||
heads_placement_points = [0 for _ in range(max_head_index)]
|
||||
while True:
|
||||
head_assign_point = []
|
||||
for head in range(max_head_index):
|
||||
if heads_placement_points[head] != 0 or heads_placement[head] == 0:
|
||||
continue
|
||||
|
||||
nozzle, points = heads_placement[head]
|
||||
max_comp_index = np.argmax(nozzle_component_points[nozzle])
|
||||
|
||||
heads_placement_points[head] = min(points, nozzle_component_points[nozzle][max_comp_index])
|
||||
nozzle_component_points[nozzle][max_comp_index] -= heads_placement_points[head]
|
||||
|
||||
head_assign_point.append(heads_placement_points[head])
|
||||
|
||||
min_points_list = list(filter(lambda x: x > 0, heads_placement_points))
|
||||
if len(min_points_list) == 0 or len(head_assign_point) == 0:
|
||||
break
|
||||
|
||||
pl += max(head_assign_point)
|
||||
|
||||
for head in range(max_head_index):
|
||||
heads_placement[head][1] -= min(min_points_list)
|
||||
heads_placement_points[head] -= min(min_points_list)
|
||||
|
||||
# every max_head_index heads in the non-decreasing order are grouped together as nozzle set
|
||||
for idx in range(len(heads_placement) // max_head_index):
|
||||
wl += heads_placement[idx][1]
|
||||
objective_val.append(T_pp * machine_points + T_tr * wl + T_nc * ul)
|
||||
objective_val.append(T_pp * machine_points + T_tr * wl + T_nc * ul + T_pl * pl)
|
||||
|
||||
return objective_val, machine_component_points
|
||||
|
||||
@ -219,13 +258,15 @@ def assemblyline_optimizer_genetic(pcb_data, component_data):
|
||||
component_feeders[part_index] = component_data.loc[part_index]['feeder-limit']
|
||||
component_nozzle[part_index] = nozzle
|
||||
|
||||
component_points = sorted(component_points.items(), key=lambda x: x[0]) # 决定染色体排列顺序
|
||||
|
||||
# population initialization
|
||||
best_popval = []
|
||||
population = selective_initialization(component_points, component_feeders, population_size)
|
||||
with tqdm(total=n_generations) as pbar:
|
||||
pbar.set_description('genetic algorithm process for PCB assembly line balance')
|
||||
|
||||
new_population, new_pop_val = [], []
|
||||
new_population = []
|
||||
for _ in range(n_generations):
|
||||
# calculate fitness value
|
||||
pop_val = []
|
||||
@ -267,7 +308,7 @@ def assemblyline_optimizer_genetic(pcb_data, component_data):
|
||||
offspring1 = constraint_swap_mutation(component_points, offspring1)
|
||||
|
||||
if np.random.random() < mutation_rate:
|
||||
offspring1 = constraint_swap_mutation(component_points, offspring1)
|
||||
offspring2 = constraint_swap_mutation(component_points, offspring2)
|
||||
|
||||
new_population.append(offspring1)
|
||||
new_population.append(offspring2)
|
||||
|
Reference in New Issue
Block a user