调整工程架构,增补了几种算法,初步添加神经网路训练拟合代码

This commit is contained in:
2024-03-29 22:10:07 +08:00
parent 800057e000
commit bae7e4e2c3
18 changed files with 2459 additions and 354 deletions

View File

@ -0,0 +1,855 @@
from base_optimizer.optimizer_common import *
def list_range(start, end=None):
return list(range(start)) if end is None else list(range(start, end))
@timer_wrapper
def gurobi_optimizer(pcb_data, component_data, feeder_data, reduction=True, partition=True, initial=False, hinter=True):
# data preparation: convert data to index
component_list, nozzle_list = defaultdict(int), defaultdict(int)
cpidx_2_part, nzidx_2_nozzle, cpidx_2_nzidx = {}, {}, {}
arg_slot_rng = None if len(feeder_data) == 0 else [feeder_data.iloc[0].slot, feeder_data.iloc[-1].slot]
for idx, data in component_data.iterrows():
part, nozzle = data.part, data.nz
cpidx_2_part[idx] = part
nz_key = [key for key, val in nzidx_2_nozzle.items() if val == nozzle]
nz_idx = len(nzidx_2_nozzle) if len(nz_key) == 0 else nz_key[0]
nzidx_2_nozzle[nz_idx] = nozzle
component_list[part] = 0
cpidx_2_nzidx[idx] = nz_idx
for _, data in pcb_data.iterrows():
idx = component_data[component_data.part == data.part].index.tolist()[0]
nozzle = component_data.loc[idx].nz
nozzle_list[nozzle] += 1
component_list[data.part] += 1
part_feederbase = defaultdict(int)
if feeder_data is not None:
for _, data in feeder_data.iterrows():
idx = -1
for idx, part_ in cpidx_2_part.items():
if data.part == part_:
break
assert idx != -1
part_feederbase[idx] = data.slot # part index - slot
if not reduction:
ratio = 2 # 直接导入飞达数据时,采用正常吸杆间隔
else:
if len(component_list) <= 1.5 * max_head_index:
ratio = 1
else:
ratio = 2
I, J = len(cpidx_2_part.keys()), len(nzidx_2_nozzle.keys())
# === determine the hyper-parameter of L ===
# first phase: calculate the number of heads for each type of nozzle
nozzle_heads = defaultdict(int)
for nozzle in nozzle_list.keys():
nozzle_heads[nozzle] = 1
while sum(nozzle_heads.values()) != max_head_index:
max_cycle_nozzle = None
for nozzle, head_num in nozzle_heads.items():
if max_cycle_nozzle is None or nozzle_list[nozzle] / head_num > nozzle_list[max_cycle_nozzle] / \
nozzle_heads[max_cycle_nozzle]:
max_cycle_nozzle = nozzle
assert max_cycle_nozzle is not None
nozzle_heads[max_cycle_nozzle] += 1
nozzle_comp_points = defaultdict(list)
for part, points in component_list.items():
idx = component_data[component_data.part == part].index.tolist()[0]
nozzle = component_data.loc[idx].nz
nozzle_comp_points[nozzle].append([part, points])
level = 1 if len(component_list) == 1 or len(component_list) % max_head_index == 0 else 2
part_assignment, cycle_assignment = [], []
def aux_func(info):
return max(map(lambda points: max([p[1] for p in points]), info))
pre_objbst, pre_changetime = None, None
def terminate_condition(mdl, where):
if where == GRB.Callback.MIP:
objbst = mdl.cbGet(GRB.Callback.MIP_OBJBST)
changetime = mdl.cbGet(GRB.Callback.RUNTIME)
nonlocal pre_objbst, pre_changetime
# condition: value change
if pre_objbst and abs(pre_objbst - objbst) < 1e-3:
if pre_changetime and changetime - pre_changetime > 45:
# pass
mdl.terminate()
else:
pre_changetime = changetime
pre_objbst = objbst
def recursive_assign(assign_points, nozzle_compo_points, cur_level, total_level) -> int:
def func(points):
return map(lambda points: max([p[1] for p in points]), points)
if cur_level > total_level and sum(func(nozzle_compo_points.values())) == 0:
return 0
elif assign_points <= 0 and cur_level == 1:
return -1 # backtrack
elif assign_points <= 0 or cur_level > total_level:
return 1 # fail
nozzle_compo_points_cpy = copy.deepcopy(nozzle_compo_points)
prev_assign = 0
for part in part_assignment[cur_level - 1]:
if part != -1:
prev_assign += 1
head_idx = 0
for nozzle, head in nozzle_heads.items():
while head:
min_idx = -1
for idx, (part, points) in enumerate(nozzle_compo_points_cpy[nozzle]):
if points >= assign_points and (
min_idx == -1 or points < nozzle_compo_points_cpy[nozzle][min_idx][1]):
min_idx = idx
part_assignment[cur_level - 1][head_idx] = -1 if min_idx == -1 else \
nozzle_compo_points_cpy[nozzle][min_idx][0]
if min_idx != -1:
nozzle_compo_points_cpy[nozzle][min_idx][1] -= assign_points
head -= 1
head_idx += 1
cycle_assignment[cur_level - 1] = assign_points
for part in part_assignment[cur_level - 1]:
if part != -1:
prev_assign -= 1
if prev_assign == 0:
res = 1
else:
points = min(len(pcb_data) // max_head_index + 1, aux_func(nozzle_compo_points_cpy.values()))
res = recursive_assign(points, nozzle_compo_points_cpy, cur_level + 1, total_level)
if res == 0:
return 0
elif res == 1:
# All cycles have been completed, but there are still points left to be allocated
return recursive_assign(assign_points - 1, nozzle_compo_points, cur_level, total_level)
# second phase: (greedy) recursive search to assign points for each cycle set and obtain an initial solution
while True:
part_assignment = [[-1 for _ in range(max_head_index)] for _ in range(level)]
cycle_assignment = [-1 for _ in range(level)]
points = min(len(pcb_data) // max_head_index + 1, max(component_list.values()))
if recursive_assign(points, nozzle_comp_points, 1, level) == 0:
break
level += 1
weight_cycle, weight_nz_change, weight_pick = 2, 3, 2
L = len(cycle_assignment) if partition else len(pcb_data)
S = ratio * I if len(feeder_data) == 0 else arg_slot_rng[-1] - arg_slot_rng[0] + 1 # the available feeder num
M = len(pcb_data) # a sufficiently large number (number of placement points)
HC = [[0 for _ in range(J)] for _ in range(I)]
for i in range(I):
for j in range(J):
HC[i][j] = 1 if cpidx_2_nzidx[i] == j else 0
mdl = Model('SMT')
mdl.setParam('Seed', 0)
mdl.setParam('OutputFlag', hinter) # set whether output the debug information
mdl.setParam('TimeLimit', 3600 * 3)
mdl.setParam('PoolSearchMode', 2)
mdl.setParam('PoolSolutions', 3e2)
mdl.setParam('PoolGap', 1e-4)
# mdl.setParam('MIPFocus', 2)
# mdl.setParam("Heuristics", 0.5)
# Use only if other methods, including exploring the tree with the default settings, do not yield a viable solution
# mdl.setParam("ZeroObjNodes", 100)
# === Decision Variables ===
x = mdl.addVars(list_range(I), list_range(S), list_range(max_head_index), list_range(L), vtype=GRB.BINARY, name='x')
y = mdl.addVars(list_range(I), list_range(max_head_index), list_range(L), vtype=GRB.BINARY, name='y')
v = mdl.addVars(list_range(S), list_range(max_head_index), list_range(L), vtype=GRB.BINARY, name='v')
c = mdl.addVars(list_range(I), list_range(max_head_index), list_range(L), vtype=GRB.INTEGER, name='c')
mdl.addConstrs(
c[i, h, l] <= component_list[cpidx_2_part[i]] for i in range(I) for h in range(max_head_index) for l in
range(L))
# todo: the condition for upper limits of feeders exceed 1
f = {}
for i in range(I):
if i not in part_feederbase.keys():
for s in range(S):
f[s, i] = mdl.addVar(vtype=GRB.BINARY, name='f_' + str(s) + '_' + str(i))
else:
for s in range(S):
f[s, i] = 1 if part_feederbase[i] == s + arg_slot_rng[0] else 0
p = mdl.addVars(list_range(-(max_head_index - 1) * ratio, S), list_range(L), vtype=GRB.BINARY, name='p')
z = mdl.addVars(list_range(J), list_range(max_head_index), list_range(L), vtype=GRB.BINARY)
d = mdl.addVars(list_range(L), list_range(max_head_index), vtype=GRB.INTEGER, name='d')
d_plus = mdl.addVars(list_range(J), list_range(max_head_index), list_range(L), vtype=GRB.INTEGER,
name='d_plus')
d_minus = mdl.addVars(list_range(J), list_range(max_head_index), list_range(L), vtype=GRB.INTEGER,
name='d_minus')
max_cycle = math.ceil(len(pcb_data) / max_head_index)
PU = mdl.addVars(list_range(-(max_head_index - 1) * ratio, S), list_range(L), vtype=GRB.INTEGER, name='PU')
WL = mdl.addVars(list_range(L), vtype=GRB.INTEGER, ub=max_cycle, name='WL')
NC = mdl.addVars(list_range(max_head_index), vtype=GRB.INTEGER, name='NC')
part_2_cpidx = defaultdict(int)
for idx, part in cpidx_2_part.items():
part_2_cpidx[part] = idx
if initial:
# initial some variables to speed up the search process
# ensure the priority of the workload assignment
cycle_index = sorted(range(len(cycle_assignment)), key=lambda k: cycle_assignment[k], reverse=True)
part_list = []
for cycle in cycle_index:
cycle_part = part_assignment[cycle]
for part in cycle_part:
if part != -1 and part not in part_list:
part_list.append(part)
slot = 0
for part in part_list:
if feeder_data is not None:
while slot in feeder_data.keys():
slot += 1 # skip assigned feeder slot
if part_2_cpidx[part] in part_feederbase.keys():
continue
part_feederbase[part_2_cpidx[part]] = slot
# f[slot, part_2_cpidx[part]].Start = 1
slot += 1
for idx, cycle in enumerate(cycle_index):
WL[idx].Start = cycle_assignment[cycle]
for h in range(max_head_index):
part = part_assignment[cycle][h]
if part == -1:
continue
i = part_2_cpidx[part]
y[i, h, idx].Start = 1
v[part_feederbase[i], h, idx].Start = 1
# === Objective ===
mdl.setObjective(weight_cycle * quicksum(WL[l] for l in range(L)) + weight_nz_change * quicksum(
NC[h] for h in range(max_head_index)) + weight_pick * quicksum(
PU[s, l] for s in range(-(max_head_index - 1) * ratio, S) for l in range(L)))
# === Constraint ===
if not partition:
mdl.addConstrs(WL[l] <= 1 for l in range(L))
# work completion
# mdl.addConstrs(c[i, h, l] == WL[l] * y[i, h, l] for i in range(I) for h in range(max_head_index) for l in range(L))
mdl.addConstrs(
c[i, h, l] <= max_cycle * y[i, h, l] for i in range(I) for h in range(max_head_index) for l in range(L))
mdl.addConstrs(c[i, h, l] <= WL[l] for i in range(I) for h in range(max_head_index) for l in range(L))
mdl.addConstrs(
c[i, h, l] >= WL[l] - max_cycle * (1 - y[i, h, l]) for i in range(I) for h in range(max_head_index) for l in
range(L))
mdl.addConstrs(
quicksum(c[i, h, l] for h in range(max_head_index) for l in range(L)) == component_list[cpidx_2_part[i]] for i
in range(I))
# variable constraint
mdl.addConstrs(quicksum(y[i, h, l] for i in range(I)) <= 1 for h in range(max_head_index) for l in range(L))
# simultaneous pick
for s in range(-(max_head_index - 1) * ratio, S):
rng = list(range(max(0, -math.floor(s / ratio)), min(max_head_index, math.ceil((S - s) / ratio))))
for l in range(L):
mdl.addConstr(quicksum(v[s + h * ratio, h, l] for h in rng) <= max_head_index * p[s, l])
mdl.addConstr(quicksum(v[s + h * ratio, h, l] for h in rng) >= p[s, l])
# mdl.addConstrs(PU[s, l] == p[s, l] * WL[l] for s in range(-(max_head_index - 1) * ratio, S) for l in range(L))
mdl.addConstrs(PU[s, l] <= max_cycle * p[s, l] for s in range(-(max_head_index - 1) * ratio, S) for l in range(L))
mdl.addConstrs(PU[s, l] <= WL[l] for s in range(-(max_head_index - 1) * ratio, S) for l in range(L))
mdl.addConstrs(
PU[s, l] >= WL[l] - max_cycle * (1 - p[s, l]) for s in range(-(max_head_index - 1) * ratio, S) for l in
range(L))
# nozzle change
mdl.addConstrs(
z[j, h, l] - z[j, h, l + 1] == d_plus[j, h, l] - d_minus[j, h, l] for l in range(L - 1) for j in range(J) for h
in range(max_head_index))
mdl.addConstrs(z[j, h, 0] - z[j, h, L - 1] == d_plus[j, h, L - 1] - d_minus[j, h, L - 1] for j in range(J) for h
in range(max_head_index))
mdl.addConstrs(
2 * d[l, h] == quicksum(d_plus[j, h, l] for j in range(J)) + quicksum(d_minus[j, h, l] for j in range(J)) for l
in range(L - 1) for h in range(max_head_index))
mdl.addConstrs(2 * d[L - 1, h] == quicksum(d_plus[j, h, L - 1] for j in range(J)) + quicksum(
d_minus[j, h, L - 1] for j in range(J)) for h in range(max_head_index))
mdl.addConstrs(NC[h] == quicksum(d[l, h] for l in range(L)) for h in range(max_head_index))
mdl.addConstrs(quicksum(y[i, h, l] for i in range(I) for h in range(max_head_index)) * M >= WL[l] for l in range(L))
# nozzle-component compatibility
mdl.addConstrs(
y[i, h, l] <= quicksum(HC[i][j] * z[j, h, l] for j in range(J)) for i in range(I) for h in range(max_head_index)
for l in range(L))
# available number of feeder
mdl.addConstrs(quicksum(f[s, i] for s in range(S)) <= 1 for i in range(I))
# available number of nozzle
mdl.addConstrs(quicksum(z[j, h, l] for h in range(max_head_index)) <= max_head_index for j in range(J) for l in range(L))
# upper limit for occupation for feeder slot
mdl.addConstrs(quicksum(f[s, i] for i in range(I)) <= 1 for s in range(S))
mdl.addConstrs(
quicksum(v[s, h, l] for s in range(S)) >= quicksum(y[i, h, l] for i in range(I)) for h in range(max_head_index)
for l in range(L))
# others
mdl.addConstrs(quicksum(z[j, h, l] for j in range(J)) <= 1 for h in range(max_head_index) for l in range(L))
# mdl.addConstrs(
# quicksum(x[i, s, h, l] for h in range(max_head_index) for l in range(L)) >= f[s, i] for i in range(I)
# for s in range(S))
# mdl.addConstrs(
# quicksum(x[i, s, h, l] for h in range(max_head_index) for l in range(L)) <= M * f[s, i] for i in
# range(I) for s in range(S))
mdl.addConstrs(
f[s, i] >= x[i, s, h, l] for s in range(S) for i in range(I) for h in range(max_head_index) for l in range(L))
mdl.addConstrs(
quicksum(x[i, s, h, l] for h in range(max_head_index) for l in range(L)) >= f[s, i] for s in
range(S) for i in range(I))
# the constraints to speed up the search process
mdl.addConstrs(
quicksum(x[i, s, h, l] for i in range(I) for s in range(S)) <= 1 for h in range(max_head_index) for l
in range(L))
if reduction:
mdl.addConstrs(WL[l] >= WL[l + 1] for l in range(L - 1))
# mdl.addConstr(quicksum(WL[l] for l in range(L)) <= sum(cycle_assignment))
mdl.addConstr(quicksum(WL[l] for l in range(L)) >= math.ceil(len(pcb_data) / max_head_index))
# mdl.addConstrs(WL[l] >= WL[l + 1] for l in range(L - 1))
# mdl.addConstrs(quicksum(z[j, h, l] for j in range(J) for h in range(max_head_index)) >= quicksum(
# z[j, h, l + 1] for j in range(J) for h in range(max_head_index)) for l in range(L - 1))
#
mdl.addConstrs(y[i, h, l] <= WL[l] for i in range(I) for h in range(max_head_index) for l in range(L))
mdl.addConstrs(v[s, h, l] <= WL[l] for s in range(S) for h in range(max_head_index) for l in range(L))
mdl.addConstrs(
x[i, s, h, l] >= y[i, h, l] + v[s, h, l] - 1 for i in range(I) for s in range(S) for h in range(max_head_index)
for l in range(L))
mdl.addConstrs(
x[i, s, h, l] <= y[i, h, l] for i in range(I) for s in range(S) for h in range(max_head_index)
for l in range(L))
mdl.addConstrs(
x[i, s, h, l] <= v[s, h, l] for i in range(I) for s in range(S) for h in range(max_head_index)
for l in range(L))
# === search process ===
mdl.update()
# mdl.write('mdl.lp')
if hinter:
print('num of constrs: ', str(len(mdl.getConstrs())), ', num of vars: ', str(len(mdl.getVars())))
mdl.optimize(terminate_condition)
# === result generation ===
nozzle_assign, component_assign = [], []
feeder_assign, cycle_assign = [], []
if mdl.Status == GRB.OPTIMAL or mdl.Status == GRB.INTERRUPTED or mdl.Status == GRB.TIME_LIMIT:
# === selection from solution pool ===
component_pos, component_avg_pos = defaultdict(list), defaultdict(list)
for _, data in pcb_data.iterrows():
component_index = component_data[component_data.part == data.part].index.tolist()[0]
component_pos[component_index].append([data.x, data.y])
for i in component_pos.keys():
component_pos[i] = sorted(component_pos[i], key=lambda pos: (pos[0], pos[1]))
component_avg_pos[i] = [sum(map(lambda pos: pos[0], component_pos[i])) / len(component_pos[i]),
sum(map(lambda pos: pos[1], component_pos[i])) / len(component_pos[i])]
min_dist, solution_number = None, -1
for sol_counter in range(mdl.SolCount):
nozzle_assign, component_assign = [], []
feeder_assign, cycle_assign = [], []
mdl.Params.SolutionNumber = sol_counter
pos_counter = defaultdict(int)
dist = 0
cycle_placement, cycle_points = defaultdict(list), defaultdict(list)
for l in range(L):
if abs(WL[l].Xn) <= 1e-4:
continue
cycle_placement[l], cycle_points[l] = [-1] * max_head_index, [None] * max_head_index
for h in range(max_head_index):
for l in range(L):
if abs(WL[l].Xn) <= 1e-4:
continue
pos_list = []
for i in range(I):
if abs(y[i, h, l].Xn) <= 1e-4:
continue
for _ in range(round(WL[l].Xn)):
pos_list.append(component_pos[i][pos_counter[i]])
pos_counter[i] += 1
cycle_placement[l][h] = i
cycle_points[l][h] = [sum(map(lambda pos: pos[0], pos_list)) / len(pos_list),
sum(map(lambda pos: pos[1], pos_list)) / len(pos_list)]
for l in range(L):
if abs(WL[l].Xn) <= 1e-4:
continue
if min_dist is None or dist < min_dist:
min_dist = dist
solution_number = sol_counter
mdl.Params.SolutionNumber = solution_number
# === 更新吸嘴、元件、周期数优化结果 ===
for l in range(L):
nozzle_assign.append([-1 for _ in range(max_head_index)])
component_assign.append([-1 for _ in range(max_head_index)])
feeder_assign.append([-1 for _ in range(max_head_index)])
cycle_assign.append(round(WL[l].Xn))
if abs(WL[l].Xn) <= 1e-4:
continue
for h in range(max_head_index):
for i in range(I):
if abs(y[i, h, l].Xn - 1) < 1e-4:
component_assign[-1][h] = i
for j in range(J):
if HC[i][j]:
nozzle_assign[-1][h] = j
for s in range(S):
if abs(v[s, h, l].Xn - 1) < 1e-4 and component_assign[l][h] != -1:
feeder_assign[l][h] = s
# === 更新供料器分配结果 ==
component_head = defaultdict(int)
for i in range(I):
cycle_num = 0
for l, component_cycle in enumerate(component_assign):
for head, component in enumerate(component_cycle):
if component == i:
component_head[i] += cycle_assign[l] * head
cycle_num += cycle_assign[l]
component_head[i] /= cycle_num # 不同元件的加权拾取贴装头
average_pos = 0
for _, data in pcb_data.iterrows():
average_pos += (data.x - component_head[part_2_cpidx[data.part]] * head_interval)
average_pos /= len(pcb_data) # 实际贴装位置的加权平均
average_slot = 0
for l in range(L):
if abs(WL[l].Xn) <= 1e-4:
continue
min_slot, max_slot = None, None
for head in range(max_head_index):
if abs(WL[l].Xn) <= 1e-4 or feeder_assign[l][head] == -1:
continue
slot = feeder_assign[l][head] - head * ratio
if min_slot is None or slot < min_slot:
min_slot = slot
if max_slot is None or slot > max_slot:
max_slot = slot
average_slot += (max_slot - min_slot) * cycle_assign[l]
average_slot /= sum(cycle_assign)
start_slot = round((average_pos + stopper_pos[0] - slotf1_pos[0]) / slot_interval + average_slot / 2) + 1
for l in range(L):
if abs(WL[l].Xn) <= 1e-4:
continue
for h in range(max_head_index):
for s in range(S):
if abs(v[s, h, l].Xn - 1) < 1e-4 and component_assign[l][h] != -1:
feeder_assign[l][h] = start_slot + s * (2 if ratio == 1 else 1)
if hinter:
print('total cost = {}'.format(mdl.objval))
print('cycle = {}, nozzle change = {}, pick up = {}'.format(quicksum(WL[l].Xn for l in range(L)), quicksum(
NC[h].Xn for h in range(max_head_index)), quicksum(
PU[s, l].Xn for s in range(-(max_head_index - 1) * ratio, S) for l in range(L))))
print('workload: ')
for l in range(L):
print(WL[l].Xn, end=', ')
print('')
print('result')
print('nozzle assignment: ', nozzle_assign)
print('component assignment: ', component_assign)
print('feeder assignment: ', feeder_assign)
print('cycle assignment: ', cycle_assign)
return component_assign, feeder_assign, cycle_assign
def scan_based_placement_route_generation(component_data, pcb_data, component_assign, cycle_assign):
placement_result, head_sequence_result = [], []
mount_point_pos, mount_point_index, mount_point_angle, mount_point_part = [], [], [], []
for i, data in pcb_data.iterrows():
component_index = component_data[component_data.part == data.part].index.tolist()[0]
# 记录贴装点序号索引和对应的位置坐标
mount_point_index.append(i)
mount_point_pos.append([data.x + stopper_pos[0], data.y + stopper_pos[1]])
mount_point_angle.append(data.r)
mount_point_part.append(component_index)
lBoundary, rBoundary = min(mount_point_pos, key=lambda x: x[0])[0], max(mount_point_pos, key=lambda x: x[0])[0]
search_step = max((rBoundary - lBoundary) / max_head_index / 2, 0)
ref_pos_y = min(mount_point_pos, key=lambda x: x[1])[1]
for cycle_index, component_cycle in enumerate(component_assign):
for _ in range(cycle_assign[cycle_index]):
min_dist = None
tmp_assigned_placement, tmp_assigned_head_seq = [], []
tmp_mount_point_pos, tmp_mount_point_index = [], []
for search_dir in range(3): # 不同的搜索方向,贴装头和起始点的选取方法各不相同
if search_dir == 0:
# 从左向右搜索
searchPoints = np.arange(lBoundary, (lBoundary + rBoundary) / 2, search_step)
head_range = list(range(max_head_index))
elif search_dir == 1:
# 从右向左搜索
searchPoints = np.arange(rBoundary + 1e-3, (lBoundary + rBoundary) / 2, -search_step)
head_range = list(range(max_head_index - 1, -1, -1))
else:
# 从中间向两边搜索
searchPoints = np.arange(lBoundary, rBoundary, search_step / 2)
head_range, head_index = [], (max_head_index - 1) // 2
while head_index >= 0:
if 2 * head_index != max_head_index - 1:
head_range.append(max_head_index - 1 - head_index)
head_range.append(head_index)
head_index -= 1
for startPoint in searchPoints:
mount_point_pos_cpy, mount_point_index_cpy = copy.deepcopy(mount_point_pos), copy.deepcopy(
mount_point_index)
mount_point_angle_cpy = copy.deepcopy(mount_point_angle)
assigned_placement = [-1] * max_head_index
assigned_mount_point = [[0, 0]] * max_head_index
assigned_mount_angle = [0] * max_head_index
head_counter, point_index = 0, -1
for head_index in head_range:
if head_counter == 0:
component_index = component_assign[cycle_index][head_index]
if component_index == -1:
continue
min_horizontal_distance = None
for index, mount_index in enumerate(mount_point_index_cpy):
if mount_point_part[mount_index] != component_index:
continue
horizontal_distance = abs(mount_point_pos_cpy[index][0] - startPoint) + 1e-3 * abs(
mount_point_pos_cpy[index][1] - ref_pos_y)
if min_horizontal_distance is None or horizontal_distance < min_horizontal_distance:
min_horizontal_distance = horizontal_distance
point_index = index
else:
point_index = -1
min_cheby_distance = None
next_comp_index = component_assign[cycle_index][head_index]
if assigned_placement[head_index] != -1 or next_comp_index == -1:
continue
for index, mount_index in enumerate(mount_point_index_cpy):
if mount_point_part[mount_index] != next_comp_index:
continue
point_pos = [[mount_point_pos_cpy[index][0] - head_index * head_interval,
mount_point_pos_cpy[index][1]]]
cheby_distance, euler_distance = 0, 0
for next_head in range(max_head_index):
if assigned_placement[next_head] == -1:
continue
point_pos.append(assigned_mount_point[next_head].copy())
point_pos[-1][0] -= next_head * head_interval
point_pos = sorted(point_pos, key=lambda x: x[0])
for mount_seq in range(len(point_pos) - 1):
cheby_distance += max(abs(point_pos[mount_seq][0] - point_pos[mount_seq + 1][0]),
abs(point_pos[mount_seq][1] - point_pos[mount_seq + 1][1]))
euler_distance += math.sqrt(
(point_pos[mount_seq][0] - point_pos[mount_seq + 1][0]) ** 2 + (
point_pos[mount_seq][1] - point_pos[mount_seq + 1][1]) ** 2)
cheby_distance += 0.01 * euler_distance
if min_cheby_distance is None or cheby_distance < min_cheby_distance:
min_cheby_distance, min_euler_distance = cheby_distance, euler_distance
point_index = index
if point_index == -1:
continue
head_counter += 1
assigned_placement[head_index] = mount_point_index_cpy[point_index]
assigned_mount_point[head_index] = mount_point_pos_cpy[point_index].copy()
assigned_mount_angle[head_index] = mount_point_angle_cpy[point_index]
mount_point_index_cpy.pop(point_index)
mount_point_pos_cpy.pop(point_index)
mount_point_angle_cpy.pop(point_index)
dist, head_seq = dynamic_programming_cycle_path(assigned_placement, assigned_mount_point,
assigned_mount_angle)
if min_dist is None or dist < min_dist:
tmp_mount_point_pos, tmp_mount_point_index = mount_point_pos_cpy, mount_point_index_cpy
tmp_assigned_placement, tmp_assigned_head_seq = assigned_placement, head_seq
min_dist = dist
mount_point_pos, mount_point_index = tmp_mount_point_pos, tmp_mount_point_index
placement_result.append(tmp_assigned_placement)
head_sequence_result.append(tmp_assigned_head_seq)
return placement_result, head_sequence_result
# return placement_route_relink_heuristic(component_data, pcb_data, placement_result, head_sequence_result)
def placement_route_relink_heuristic(component_data, pcb_data, placement_result, head_sequence_result, hinter=True):
mount_point_pos, mount_point_angle, mount_point_index, mount_point_part = [], [], [], []
for i, data in pcb_data.iterrows():
component_index = component_data[component_data.part == data.part].index.tolist()[0]
# 记录贴装点序号索引和对应的位置坐标
mount_point_index.append(i)
mount_point_pos.append([data.x + stopper_pos[0], data.y + stopper_pos[1]])
mount_point_angle.append(data.r)
mount_point_part.append(component_index)
cycle_length, cycle_average_pos = [], []
for cycle, placement in enumerate(placement_result):
prev_pos, prev_angle = None, None
cycle_pos_list = []
cycle_length.append(0)
for idx, head in enumerate(head_sequence_result[cycle]):
point_index = placement[head]
if point_index == -1:
continue
pos = [mount_point_pos[point_index][0] - head * head_interval, mount_point_pos[point_index][1]]
angle = mount_point_angle[point_index]
cycle_pos_list.append(pos)
if prev_pos is not None:
if head_sequence_result[cycle][idx - 1] // 2 == head_sequence_result[cycle][idx] // 2: # 同轴
rotary_angle = prev_angle - angle
else:
rotary_angle = 0
cycle_length[-1] += max(axis_moving_time(prev_pos[0] - pos[0], 0),
axis_moving_time(prev_pos[1] - pos[1], 1), head_rotary_time(rotary_angle))
prev_pos, prev_angle = pos, angle
cycle_average_pos.append([sum(map(lambda pos: pos[0], cycle_pos_list)) / len(cycle_pos_list),
sum(map(lambda pos: pos[1], cycle_pos_list)) / len(cycle_pos_list)])
best_placement_result, best_head_sequence_result = copy.deepcopy(placement_result), copy.deepcopy(
head_sequence_result)
best_cycle_length, best_cycle_average_pos = copy.deepcopy(cycle_length), copy.deepcopy(cycle_average_pos)
n_runningtime, n_iteration = 10, 0
start_time = time.time()
with tqdm(total=n_runningtime, leave=False) as pbar:
pbar.set_description('swap heuristic process')
prev_time = start_time
while True:
n_iteration += 1
placement_result, head_sequence_result = copy.deepcopy(best_placement_result), copy.deepcopy(
best_head_sequence_result)
cycle_length = best_cycle_length.copy()
cycle_average_pos = copy.deepcopy(best_cycle_average_pos)
cycle_index = roulette_wheel_selection(cycle_length) # 根据周期加权移动距离随机选择周期
point_dist = [] # 周期内各贴装点距离中心位置的切氏距离
for head in head_sequence_result[cycle_index]:
point_index = placement_result[cycle_index][head]
_delta_x = abs(mount_point_pos[point_index][0] - head * head_interval - cycle_average_pos[cycle_index][0])
_delta_y = abs(mount_point_pos[point_index][1] - cycle_average_pos[cycle_index][1])
point_dist.append(max(_delta_x, _delta_y))
# 随机选择一个异常点
head_index = head_sequence_result[cycle_index][roulette_wheel_selection(point_dist)]
point_index = placement_result[cycle_index][head_index]
# 找距离该异常点最近的周期
min_dist = None
chg_cycle_index = -1
for idx in range(len(cycle_average_pos)):
if idx == cycle_index:
continue
dist_ = 0
component_type_check = False
for head in head_sequence_result[idx]:
dist_ += max(abs(mount_point_pos[placement_result[idx][head]][0] - mount_point_pos[point_index][0]),
abs(mount_point_pos[placement_result[idx][head]][1] - mount_point_pos[point_index][1]))
if mount_point_part[placement_result[idx][head]] == mount_point_part[point_index]:
component_type_check = True
if (min_dist is None or dist_ < min_dist) and component_type_check:
min_dist = dist_
chg_cycle_index = idx
assert chg_cycle_index != -1
chg_head, min_chg_dist = None, None
chg_cycle_point = []
for head in head_sequence_result[chg_cycle_index]:
index = placement_result[chg_cycle_index][head]
chg_cycle_point.append([mount_point_pos[index][0] - head * head_interval, mount_point_pos[index][1]])
for idx, head in enumerate(head_sequence_result[chg_cycle_index]):
chg_cycle_point_cpy = copy.deepcopy(chg_cycle_point)
index = placement_result[chg_cycle_index][head]
if mount_point_part[index] != mount_point_part[point_index]:
continue
chg_cycle_point_cpy[idx][0] = (mount_point_pos[index][0]) - head * head_interval
chg_dist = 0
aver_chg_pos = [sum(map(lambda x: x[0], chg_cycle_point_cpy)) / len(chg_cycle_point_cpy),
sum(map(lambda x: x[1], chg_cycle_point_cpy)) / len(chg_cycle_point_cpy)]
for pos in chg_cycle_point_cpy:
chg_dist += max(abs(aver_chg_pos[0] - pos[0]), abs(aver_chg_pos[1] - pos[1]))
# 更换后各点距离中心更近
if min_chg_dist is None or chg_dist < min_chg_dist:
chg_head = head
min_chg_dist = chg_dist
assert chg_head is not None
# === 第一轮变更周期chg_cycle_index的贴装点重排 ===
chg_placement_res = placement_result[chg_cycle_index].copy()
chg_placement_res[chg_head] = point_index
cycle_point_list = defaultdict(list)
for head, point in enumerate(chg_placement_res):
if point == -1:
continue
cycle_point_list[mount_point_part[point]].append(point)
for key, point_list in cycle_point_list.items():
cycle_point_list[key] = sorted(point_list, key=lambda p: mount_point_pos[p][0])
chg_placement_res, chg_point_assign_res = [], [[0, 0]] * max_head_index
chg_angle_res = [0] * max_head_index
for head, point_index in enumerate(placement_result[chg_cycle_index]):
if point_index == -1:
chg_placement_res.append(-1)
else:
part = mount_point_part[point_index]
chg_placement_res.append(cycle_point_list[part][0])
chg_point_assign_res[head] = mount_point_pos[cycle_point_list[part][0]].copy()
chg_angle_res[head] = mount_point_angle[cycle_point_list[part][0]]
cycle_point_list[part].pop(0)
chg_place_moving, chg_head_res = dynamic_programming_cycle_path(chg_placement_res, chg_point_assign_res, chg_angle_res)
# === 第二轮原始周期cycle_index的贴装点重排 ===
placement_res = placement_result[cycle_index].copy()
placement_res[head_index] = placement_result[chg_cycle_index][chg_head]
for point in placement_res:
if point == -1:
continue
cycle_point_list[mount_point_part[point]].append(point)
for key, point_list in cycle_point_list.items():
cycle_point_list[key] = sorted(point_list, key=lambda p: mount_point_pos[p][0])
placement_res, point_assign_res = [], [[0, 0]] * max_head_index
angle_assign_res = [0] * max_head_index
for head, point_index in enumerate(placement_result[cycle_index]):
if point_index == -1:
placement_res.append(-1)
else:
part = mount_point_part[point_index]
placement_res.append(cycle_point_list[part][0])
point_assign_res[head] = mount_point_pos[cycle_point_list[part][0]].copy()
angle_assign_res[head] = mount_point_angle[cycle_point_list[part][0]]
cycle_point_list[part].pop(0)
place_moving, place_head_res = dynamic_programming_cycle_path(placement_res, point_assign_res, angle_assign_res)
# 更新贴装顺序分配结果
placement_result[cycle_index], head_sequence_result[cycle_index] = placement_res, place_head_res
placement_result[chg_cycle_index], head_sequence_result[chg_cycle_index] = chg_placement_res, chg_head_res
# 更新移动路径
cycle_length[cycle_index], cycle_length[chg_cycle_index] = place_moving, chg_place_moving
# 更新平均坐标和最大偏离点索引
point_list, point_index_list = [], []
for head in head_sequence_result[cycle_index]:
point_index_list.append(placement_result[cycle_index][head])
point_pos = mount_point_pos[point_index_list[-1]].copy()
point_pos[0] -= head * head_interval
point_list.append(point_pos)
cycle_average_pos[cycle_index] = [sum(map(lambda x: x[0], point_list)) / len(point_list),
sum(map(lambda x: x[1], point_list)) / len(point_list)]
point_list, point_index_list = [], []
for head in head_sequence_result[chg_cycle_index]:
point_index_list.append(placement_result[chg_cycle_index][head])
point_pos = mount_point_pos[point_index_list[-1]].copy()
point_pos[0] -= head * head_interval
point_list.append(point_pos)
cycle_average_pos[chg_cycle_index] = [sum(map(lambda x: x[0], point_list)) / len(point_list),
sum(map(lambda x: x[1], point_list)) / len(point_list)]
if sum(cycle_length) < sum(best_cycle_length):
best_cycle_length = cycle_length.copy()
best_cycle_average_pos = copy.deepcopy(cycle_average_pos)
best_placement_result, best_head_sequence_result = copy.deepcopy(placement_result), copy.deepcopy(
head_sequence_result)
cur_time = time.time()
if cur_time - start_time > n_runningtime:
break
pbar.update(cur_time - prev_time)
prev_time = cur_time
# print("number of iteration: ", n_iteration)
return best_placement_result, best_head_sequence_result