Files
smt-optimizer/base_optimizer/optimizer_twophase.py

855 lines
40 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

from base_optimizer.optimizer_common import *
def list_range(start, end=None):
return list(range(start)) if end is None else list(range(start, end))
@timer_wrapper
def gurobi_optimizer(pcb_data, component_data, feeder_data, reduction=True, partition=True, initial=False, hinter=True):
# data preparation: convert data to index
component_list, nozzle_list = defaultdict(int), defaultdict(int)
cpidx_2_part, nzidx_2_nozzle, cpidx_2_nzidx = {}, {}, {}
arg_slot_rng = None if len(feeder_data) == 0 else [feeder_data.iloc[0].slot, feeder_data.iloc[-1].slot]
for idx, data in component_data.iterrows():
part, nozzle = data.part, data.nz
cpidx_2_part[idx] = part
nz_key = [key for key, val in nzidx_2_nozzle.items() if val == nozzle]
nz_idx = len(nzidx_2_nozzle) if len(nz_key) == 0 else nz_key[0]
nzidx_2_nozzle[nz_idx] = nozzle
component_list[part] = 0
cpidx_2_nzidx[idx] = nz_idx
for _, data in pcb_data.iterrows():
idx = component_data[component_data.part == data.part].index.tolist()[0]
nozzle = component_data.loc[idx].nz
nozzle_list[nozzle] += 1
component_list[data.part] += 1
part_feederbase = defaultdict(int)
if feeder_data is not None:
for _, data in feeder_data.iterrows():
idx = -1
for idx, part_ in cpidx_2_part.items():
if data.part == part_:
break
assert idx != -1
part_feederbase[idx] = data.slot # part index - slot
if not reduction:
ratio = 2 # 直接导入飞达数据时,采用正常吸杆间隔
else:
if len(component_list) <= 1.5 * max_head_index:
ratio = 1
else:
ratio = 2
I, J = len(cpidx_2_part.keys()), len(nzidx_2_nozzle.keys())
# === determine the hyper-parameter of L ===
# first phase: calculate the number of heads for each type of nozzle
nozzle_heads = defaultdict(int)
for nozzle in nozzle_list.keys():
nozzle_heads[nozzle] = 1
while sum(nozzle_heads.values()) != max_head_index:
max_cycle_nozzle = None
for nozzle, head_num in nozzle_heads.items():
if max_cycle_nozzle is None or nozzle_list[nozzle] / head_num > nozzle_list[max_cycle_nozzle] / \
nozzle_heads[max_cycle_nozzle]:
max_cycle_nozzle = nozzle
assert max_cycle_nozzle is not None
nozzle_heads[max_cycle_nozzle] += 1
nozzle_comp_points = defaultdict(list)
for part, points in component_list.items():
idx = component_data[component_data.part == part].index.tolist()[0]
nozzle = component_data.loc[idx].nz
nozzle_comp_points[nozzle].append([part, points])
level = 1 if len(component_list) == 1 or len(component_list) % max_head_index == 0 else 2
part_assignment, cycle_assignment = [], []
def aux_func(info):
return max(map(lambda points: max([p[1] for p in points]), info))
pre_objbst, pre_changetime = None, None
def terminate_condition(mdl, where):
if where == GRB.Callback.MIP:
objbst = mdl.cbGet(GRB.Callback.MIP_OBJBST)
changetime = mdl.cbGet(GRB.Callback.RUNTIME)
nonlocal pre_objbst, pre_changetime
# condition: value change
if pre_objbst and abs(pre_objbst - objbst) < 1e-3:
if pre_changetime and changetime - pre_changetime > 45:
# pass
mdl.terminate()
else:
pre_changetime = changetime
pre_objbst = objbst
def recursive_assign(assign_points, nozzle_compo_points, cur_level, total_level) -> int:
def func(points):
return map(lambda points: max([p[1] for p in points]), points)
if cur_level > total_level and sum(func(nozzle_compo_points.values())) == 0:
return 0
elif assign_points <= 0 and cur_level == 1:
return -1 # backtrack
elif assign_points <= 0 or cur_level > total_level:
return 1 # fail
nozzle_compo_points_cpy = copy.deepcopy(nozzle_compo_points)
prev_assign = 0
for part in part_assignment[cur_level - 1]:
if part != -1:
prev_assign += 1
head_idx = 0
for nozzle, head in nozzle_heads.items():
while head:
min_idx = -1
for idx, (part, points) in enumerate(nozzle_compo_points_cpy[nozzle]):
if points >= assign_points and (
min_idx == -1 or points < nozzle_compo_points_cpy[nozzle][min_idx][1]):
min_idx = idx
part_assignment[cur_level - 1][head_idx] = -1 if min_idx == -1 else \
nozzle_compo_points_cpy[nozzle][min_idx][0]
if min_idx != -1:
nozzle_compo_points_cpy[nozzle][min_idx][1] -= assign_points
head -= 1
head_idx += 1
cycle_assignment[cur_level - 1] = assign_points
for part in part_assignment[cur_level - 1]:
if part != -1:
prev_assign -= 1
if prev_assign == 0:
res = 1
else:
points = min(len(pcb_data) // max_head_index + 1, aux_func(nozzle_compo_points_cpy.values()))
res = recursive_assign(points, nozzle_compo_points_cpy, cur_level + 1, total_level)
if res == 0:
return 0
elif res == 1:
# All cycles have been completed, but there are still points left to be allocated
return recursive_assign(assign_points - 1, nozzle_compo_points, cur_level, total_level)
# second phase: (greedy) recursive search to assign points for each cycle set and obtain an initial solution
while True:
part_assignment = [[-1 for _ in range(max_head_index)] for _ in range(level)]
cycle_assignment = [-1 for _ in range(level)]
points = min(len(pcb_data) // max_head_index + 1, max(component_list.values()))
if recursive_assign(points, nozzle_comp_points, 1, level) == 0:
break
level += 1
weight_cycle, weight_nz_change, weight_pick = 2, 3, 2
L = len(cycle_assignment) if partition else len(pcb_data)
S = ratio * I if len(feeder_data) == 0 else arg_slot_rng[-1] - arg_slot_rng[0] + 1 # the available feeder num
M = len(pcb_data) # a sufficiently large number (number of placement points)
HC = [[0 for _ in range(J)] for _ in range(I)]
for i in range(I):
for j in range(J):
HC[i][j] = 1 if cpidx_2_nzidx[i] == j else 0
mdl = Model('SMT')
mdl.setParam('Seed', 0)
mdl.setParam('OutputFlag', hinter) # set whether output the debug information
mdl.setParam('TimeLimit', 3600 * 3)
mdl.setParam('PoolSearchMode', 2)
mdl.setParam('PoolSolutions', 3e2)
mdl.setParam('PoolGap', 1e-4)
# mdl.setParam('MIPFocus', 2)
# mdl.setParam("Heuristics", 0.5)
# Use only if other methods, including exploring the tree with the default settings, do not yield a viable solution
# mdl.setParam("ZeroObjNodes", 100)
# === Decision Variables ===
x = mdl.addVars(list_range(I), list_range(S), list_range(max_head_index), list_range(L), vtype=GRB.BINARY, name='x')
y = mdl.addVars(list_range(I), list_range(max_head_index), list_range(L), vtype=GRB.BINARY, name='y')
v = mdl.addVars(list_range(S), list_range(max_head_index), list_range(L), vtype=GRB.BINARY, name='v')
c = mdl.addVars(list_range(I), list_range(max_head_index), list_range(L), vtype=GRB.INTEGER, name='c')
mdl.addConstrs(
c[i, h, l] <= component_list[cpidx_2_part[i]] for i in range(I) for h in range(max_head_index) for l in
range(L))
# todo: the condition for upper limits of feeders exceed 1
f = {}
for i in range(I):
if i not in part_feederbase.keys():
for s in range(S):
f[s, i] = mdl.addVar(vtype=GRB.BINARY, name='f_' + str(s) + '_' + str(i))
else:
for s in range(S):
f[s, i] = 1 if part_feederbase[i] == s + arg_slot_rng[0] else 0
p = mdl.addVars(list_range(-(max_head_index - 1) * ratio, S), list_range(L), vtype=GRB.BINARY, name='p')
z = mdl.addVars(list_range(J), list_range(max_head_index), list_range(L), vtype=GRB.BINARY)
d = mdl.addVars(list_range(L), list_range(max_head_index), vtype=GRB.INTEGER, name='d')
d_plus = mdl.addVars(list_range(J), list_range(max_head_index), list_range(L), vtype=GRB.INTEGER,
name='d_plus')
d_minus = mdl.addVars(list_range(J), list_range(max_head_index), list_range(L), vtype=GRB.INTEGER,
name='d_minus')
max_cycle = math.ceil(len(pcb_data) / max_head_index)
PU = mdl.addVars(list_range(-(max_head_index - 1) * ratio, S), list_range(L), vtype=GRB.INTEGER, name='PU')
WL = mdl.addVars(list_range(L), vtype=GRB.INTEGER, ub=max_cycle, name='WL')
NC = mdl.addVars(list_range(max_head_index), vtype=GRB.INTEGER, name='NC')
part_2_cpidx = defaultdict(int)
for idx, part in cpidx_2_part.items():
part_2_cpidx[part] = idx
if initial:
# initial some variables to speed up the search process
# ensure the priority of the workload assignment
cycle_index = sorted(range(len(cycle_assignment)), key=lambda k: cycle_assignment[k], reverse=True)
part_list = []
for cycle in cycle_index:
cycle_part = part_assignment[cycle]
for part in cycle_part:
if part != -1 and part not in part_list:
part_list.append(part)
slot = 0
for part in part_list:
if feeder_data is not None:
while slot in feeder_data.keys():
slot += 1 # skip assigned feeder slot
if part_2_cpidx[part] in part_feederbase.keys():
continue
part_feederbase[part_2_cpidx[part]] = slot
# f[slot, part_2_cpidx[part]].Start = 1
slot += 1
for idx, cycle in enumerate(cycle_index):
WL[idx].Start = cycle_assignment[cycle]
for h in range(max_head_index):
part = part_assignment[cycle][h]
if part == -1:
continue
i = part_2_cpidx[part]
y[i, h, idx].Start = 1
v[part_feederbase[i], h, idx].Start = 1
# === Objective ===
mdl.setObjective(weight_cycle * quicksum(WL[l] for l in range(L)) + weight_nz_change * quicksum(
NC[h] for h in range(max_head_index)) + weight_pick * quicksum(
PU[s, l] for s in range(-(max_head_index - 1) * ratio, S) for l in range(L)))
# === Constraint ===
if not partition:
mdl.addConstrs(WL[l] <= 1 for l in range(L))
# work completion
# mdl.addConstrs(c[i, h, l] == WL[l] * y[i, h, l] for i in range(I) for h in range(max_head_index) for l in range(L))
mdl.addConstrs(
c[i, h, l] <= max_cycle * y[i, h, l] for i in range(I) for h in range(max_head_index) for l in range(L))
mdl.addConstrs(c[i, h, l] <= WL[l] for i in range(I) for h in range(max_head_index) for l in range(L))
mdl.addConstrs(
c[i, h, l] >= WL[l] - max_cycle * (1 - y[i, h, l]) for i in range(I) for h in range(max_head_index) for l in
range(L))
mdl.addConstrs(
quicksum(c[i, h, l] for h in range(max_head_index) for l in range(L)) == component_list[cpidx_2_part[i]] for i
in range(I))
# variable constraint
mdl.addConstrs(quicksum(y[i, h, l] for i in range(I)) <= 1 for h in range(max_head_index) for l in range(L))
# simultaneous pick
for s in range(-(max_head_index - 1) * ratio, S):
rng = list(range(max(0, -math.floor(s / ratio)), min(max_head_index, math.ceil((S - s) / ratio))))
for l in range(L):
mdl.addConstr(quicksum(v[s + h * ratio, h, l] for h in rng) <= max_head_index * p[s, l])
mdl.addConstr(quicksum(v[s + h * ratio, h, l] for h in rng) >= p[s, l])
# mdl.addConstrs(PU[s, l] == p[s, l] * WL[l] for s in range(-(max_head_index - 1) * ratio, S) for l in range(L))
mdl.addConstrs(PU[s, l] <= max_cycle * p[s, l] for s in range(-(max_head_index - 1) * ratio, S) for l in range(L))
mdl.addConstrs(PU[s, l] <= WL[l] for s in range(-(max_head_index - 1) * ratio, S) for l in range(L))
mdl.addConstrs(
PU[s, l] >= WL[l] - max_cycle * (1 - p[s, l]) for s in range(-(max_head_index - 1) * ratio, S) for l in
range(L))
# nozzle change
mdl.addConstrs(
z[j, h, l] - z[j, h, l + 1] == d_plus[j, h, l] - d_minus[j, h, l] for l in range(L - 1) for j in range(J) for h
in range(max_head_index))
mdl.addConstrs(z[j, h, 0] - z[j, h, L - 1] == d_plus[j, h, L - 1] - d_minus[j, h, L - 1] for j in range(J) for h
in range(max_head_index))
mdl.addConstrs(
2 * d[l, h] == quicksum(d_plus[j, h, l] for j in range(J)) + quicksum(d_minus[j, h, l] for j in range(J)) for l
in range(L - 1) for h in range(max_head_index))
mdl.addConstrs(2 * d[L - 1, h] == quicksum(d_plus[j, h, L - 1] for j in range(J)) + quicksum(
d_minus[j, h, L - 1] for j in range(J)) for h in range(max_head_index))
mdl.addConstrs(NC[h] == quicksum(d[l, h] for l in range(L)) for h in range(max_head_index))
mdl.addConstrs(quicksum(y[i, h, l] for i in range(I) for h in range(max_head_index)) * M >= WL[l] for l in range(L))
# nozzle-component compatibility
mdl.addConstrs(
y[i, h, l] <= quicksum(HC[i][j] * z[j, h, l] for j in range(J)) for i in range(I) for h in range(max_head_index)
for l in range(L))
# available number of feeder
mdl.addConstrs(quicksum(f[s, i] for s in range(S)) <= 1 for i in range(I))
# available number of nozzle
mdl.addConstrs(quicksum(z[j, h, l] for h in range(max_head_index)) <= max_head_index for j in range(J) for l in range(L))
# upper limit for occupation for feeder slot
mdl.addConstrs(quicksum(f[s, i] for i in range(I)) <= 1 for s in range(S))
mdl.addConstrs(
quicksum(v[s, h, l] for s in range(S)) >= quicksum(y[i, h, l] for i in range(I)) for h in range(max_head_index)
for l in range(L))
# others
mdl.addConstrs(quicksum(z[j, h, l] for j in range(J)) <= 1 for h in range(max_head_index) for l in range(L))
# mdl.addConstrs(
# quicksum(x[i, s, h, l] for h in range(max_head_index) for l in range(L)) >= f[s, i] for i in range(I)
# for s in range(S))
# mdl.addConstrs(
# quicksum(x[i, s, h, l] for h in range(max_head_index) for l in range(L)) <= M * f[s, i] for i in
# range(I) for s in range(S))
mdl.addConstrs(
f[s, i] >= x[i, s, h, l] for s in range(S) for i in range(I) for h in range(max_head_index) for l in range(L))
mdl.addConstrs(
quicksum(x[i, s, h, l] for h in range(max_head_index) for l in range(L)) >= f[s, i] for s in
range(S) for i in range(I))
# the constraints to speed up the search process
mdl.addConstrs(
quicksum(x[i, s, h, l] for i in range(I) for s in range(S)) <= 1 for h in range(max_head_index) for l
in range(L))
if reduction:
mdl.addConstrs(WL[l] >= WL[l + 1] for l in range(L - 1))
# mdl.addConstr(quicksum(WL[l] for l in range(L)) <= sum(cycle_assignment))
mdl.addConstr(quicksum(WL[l] for l in range(L)) >= math.ceil(len(pcb_data) / max_head_index))
# mdl.addConstrs(WL[l] >= WL[l + 1] for l in range(L - 1))
# mdl.addConstrs(quicksum(z[j, h, l] for j in range(J) for h in range(max_head_index)) >= quicksum(
# z[j, h, l + 1] for j in range(J) for h in range(max_head_index)) for l in range(L - 1))
#
mdl.addConstrs(y[i, h, l] <= WL[l] for i in range(I) for h in range(max_head_index) for l in range(L))
mdl.addConstrs(v[s, h, l] <= WL[l] for s in range(S) for h in range(max_head_index) for l in range(L))
mdl.addConstrs(
x[i, s, h, l] >= y[i, h, l] + v[s, h, l] - 1 for i in range(I) for s in range(S) for h in range(max_head_index)
for l in range(L))
mdl.addConstrs(
x[i, s, h, l] <= y[i, h, l] for i in range(I) for s in range(S) for h in range(max_head_index)
for l in range(L))
mdl.addConstrs(
x[i, s, h, l] <= v[s, h, l] for i in range(I) for s in range(S) for h in range(max_head_index)
for l in range(L))
# === search process ===
mdl.update()
# mdl.write('mdl.lp')
if hinter:
print('num of constrs: ', str(len(mdl.getConstrs())), ', num of vars: ', str(len(mdl.getVars())))
mdl.optimize(terminate_condition)
# === result generation ===
nozzle_assign, component_assign = [], []
feeder_assign, cycle_assign = [], []
if mdl.Status == GRB.OPTIMAL or mdl.Status == GRB.INTERRUPTED or mdl.Status == GRB.TIME_LIMIT:
# === selection from solution pool ===
component_pos, component_avg_pos = defaultdict(list), defaultdict(list)
for _, data in pcb_data.iterrows():
component_index = component_data[component_data.part == data.part].index.tolist()[0]
component_pos[component_index].append([data.x, data.y])
for i in component_pos.keys():
component_pos[i] = sorted(component_pos[i], key=lambda pos: (pos[0], pos[1]))
component_avg_pos[i] = [sum(map(lambda pos: pos[0], component_pos[i])) / len(component_pos[i]),
sum(map(lambda pos: pos[1], component_pos[i])) / len(component_pos[i])]
min_dist, solution_number = None, -1
for sol_counter in range(mdl.SolCount):
nozzle_assign, component_assign = [], []
feeder_assign, cycle_assign = [], []
mdl.Params.SolutionNumber = sol_counter
pos_counter = defaultdict(int)
dist = 0
cycle_placement, cycle_points = defaultdict(list), defaultdict(list)
for l in range(L):
if abs(WL[l].Xn) <= 1e-4:
continue
cycle_placement[l], cycle_points[l] = [-1] * max_head_index, [None] * max_head_index
for h in range(max_head_index):
for l in range(L):
if abs(WL[l].Xn) <= 1e-4:
continue
pos_list = []
for i in range(I):
if abs(y[i, h, l].Xn) <= 1e-4:
continue
for _ in range(round(WL[l].Xn)):
pos_list.append(component_pos[i][pos_counter[i]])
pos_counter[i] += 1
cycle_placement[l][h] = i
cycle_points[l][h] = [sum(map(lambda pos: pos[0], pos_list)) / len(pos_list),
sum(map(lambda pos: pos[1], pos_list)) / len(pos_list)]
for l in range(L):
if abs(WL[l].Xn) <= 1e-4:
continue
if min_dist is None or dist < min_dist:
min_dist = dist
solution_number = sol_counter
mdl.Params.SolutionNumber = solution_number
# === 更新吸嘴、元件、周期数优化结果 ===
for l in range(L):
nozzle_assign.append([-1 for _ in range(max_head_index)])
component_assign.append([-1 for _ in range(max_head_index)])
feeder_assign.append([-1 for _ in range(max_head_index)])
cycle_assign.append(round(WL[l].Xn))
if abs(WL[l].Xn) <= 1e-4:
continue
for h in range(max_head_index):
for i in range(I):
if abs(y[i, h, l].Xn - 1) < 1e-4:
component_assign[-1][h] = i
for j in range(J):
if HC[i][j]:
nozzle_assign[-1][h] = j
for s in range(S):
if abs(v[s, h, l].Xn - 1) < 1e-4 and component_assign[l][h] != -1:
feeder_assign[l][h] = s
# === 更新供料器分配结果 ==
component_head = defaultdict(int)
for i in range(I):
cycle_num = 0
for l, component_cycle in enumerate(component_assign):
for head, component in enumerate(component_cycle):
if component == i:
component_head[i] += cycle_assign[l] * head
cycle_num += cycle_assign[l]
component_head[i] /= cycle_num # 不同元件的加权拾取贴装头
average_pos = 0
for _, data in pcb_data.iterrows():
average_pos += (data.x - component_head[part_2_cpidx[data.part]] * head_interval)
average_pos /= len(pcb_data) # 实际贴装位置的加权平均
average_slot = 0
for l in range(L):
if abs(WL[l].Xn) <= 1e-4:
continue
min_slot, max_slot = None, None
for head in range(max_head_index):
if abs(WL[l].Xn) <= 1e-4 or feeder_assign[l][head] == -1:
continue
slot = feeder_assign[l][head] - head * ratio
if min_slot is None or slot < min_slot:
min_slot = slot
if max_slot is None or slot > max_slot:
max_slot = slot
average_slot += (max_slot - min_slot) * cycle_assign[l]
average_slot /= sum(cycle_assign)
start_slot = round((average_pos + stopper_pos[0] - slotf1_pos[0]) / slot_interval + average_slot / 2) + 1
for l in range(L):
if abs(WL[l].Xn) <= 1e-4:
continue
for h in range(max_head_index):
for s in range(S):
if abs(v[s, h, l].Xn - 1) < 1e-4 and component_assign[l][h] != -1:
feeder_assign[l][h] = start_slot + s * (2 if ratio == 1 else 1)
if hinter:
print('total cost = {}'.format(mdl.objval))
print('cycle = {}, nozzle change = {}, pick up = {}'.format(quicksum(WL[l].Xn for l in range(L)), quicksum(
NC[h].Xn for h in range(max_head_index)), quicksum(
PU[s, l].Xn for s in range(-(max_head_index - 1) * ratio, S) for l in range(L))))
print('workload: ')
for l in range(L):
print(WL[l].Xn, end=', ')
print('')
print('result')
print('nozzle assignment: ', nozzle_assign)
print('component assignment: ', component_assign)
print('feeder assignment: ', feeder_assign)
print('cycle assignment: ', cycle_assign)
return component_assign, feeder_assign, cycle_assign
def scan_based_placement_route_generation(component_data, pcb_data, component_assign, cycle_assign):
placement_result, head_sequence_result = [], []
mount_point_pos, mount_point_index, mount_point_angle, mount_point_part = [], [], [], []
for i, data in pcb_data.iterrows():
component_index = component_data[component_data.part == data.part].index.tolist()[0]
# 记录贴装点序号索引和对应的位置坐标
mount_point_index.append(i)
mount_point_pos.append([data.x + stopper_pos[0], data.y + stopper_pos[1]])
mount_point_angle.append(data.r)
mount_point_part.append(component_index)
lBoundary, rBoundary = min(mount_point_pos, key=lambda x: x[0])[0], max(mount_point_pos, key=lambda x: x[0])[0]
search_step = max((rBoundary - lBoundary) / max_head_index / 2, 0)
ref_pos_y = min(mount_point_pos, key=lambda x: x[1])[1]
for cycle_index, component_cycle in enumerate(component_assign):
for _ in range(cycle_assign[cycle_index]):
min_dist = None
tmp_assigned_placement, tmp_assigned_head_seq = [], []
tmp_mount_point_pos, tmp_mount_point_index = [], []
for search_dir in range(3): # 不同的搜索方向,贴装头和起始点的选取方法各不相同
if search_dir == 0:
# 从左向右搜索
searchPoints = np.arange(lBoundary, (lBoundary + rBoundary) / 2, search_step)
head_range = list(range(max_head_index))
elif search_dir == 1:
# 从右向左搜索
searchPoints = np.arange(rBoundary + 1e-3, (lBoundary + rBoundary) / 2, -search_step)
head_range = list(range(max_head_index - 1, -1, -1))
else:
# 从中间向两边搜索
searchPoints = np.arange(lBoundary, rBoundary, search_step / 2)
head_range, head_index = [], (max_head_index - 1) // 2
while head_index >= 0:
if 2 * head_index != max_head_index - 1:
head_range.append(max_head_index - 1 - head_index)
head_range.append(head_index)
head_index -= 1
for startPoint in searchPoints:
mount_point_pos_cpy, mount_point_index_cpy = copy.deepcopy(mount_point_pos), copy.deepcopy(
mount_point_index)
mount_point_angle_cpy = copy.deepcopy(mount_point_angle)
assigned_placement = [-1] * max_head_index
assigned_mount_point = [[0, 0]] * max_head_index
assigned_mount_angle = [0] * max_head_index
head_counter, point_index = 0, -1
for head_index in head_range:
if head_counter == 0:
component_index = component_assign[cycle_index][head_index]
if component_index == -1:
continue
min_horizontal_distance = None
for index, mount_index in enumerate(mount_point_index_cpy):
if mount_point_part[mount_index] != component_index:
continue
horizontal_distance = abs(mount_point_pos_cpy[index][0] - startPoint) + 1e-3 * abs(
mount_point_pos_cpy[index][1] - ref_pos_y)
if min_horizontal_distance is None or horizontal_distance < min_horizontal_distance:
min_horizontal_distance = horizontal_distance
point_index = index
else:
point_index = -1
min_cheby_distance = None
next_comp_index = component_assign[cycle_index][head_index]
if assigned_placement[head_index] != -1 or next_comp_index == -1:
continue
for index, mount_index in enumerate(mount_point_index_cpy):
if mount_point_part[mount_index] != next_comp_index:
continue
point_pos = [[mount_point_pos_cpy[index][0] - head_index * head_interval,
mount_point_pos_cpy[index][1]]]
cheby_distance, euler_distance = 0, 0
for next_head in range(max_head_index):
if assigned_placement[next_head] == -1:
continue
point_pos.append(assigned_mount_point[next_head].copy())
point_pos[-1][0] -= next_head * head_interval
point_pos = sorted(point_pos, key=lambda x: x[0])
for mount_seq in range(len(point_pos) - 1):
cheby_distance += max(abs(point_pos[mount_seq][0] - point_pos[mount_seq + 1][0]),
abs(point_pos[mount_seq][1] - point_pos[mount_seq + 1][1]))
euler_distance += math.sqrt(
(point_pos[mount_seq][0] - point_pos[mount_seq + 1][0]) ** 2 + (
point_pos[mount_seq][1] - point_pos[mount_seq + 1][1]) ** 2)
cheby_distance += 0.01 * euler_distance
if min_cheby_distance is None or cheby_distance < min_cheby_distance:
min_cheby_distance, min_euler_distance = cheby_distance, euler_distance
point_index = index
if point_index == -1:
continue
head_counter += 1
assigned_placement[head_index] = mount_point_index_cpy[point_index]
assigned_mount_point[head_index] = mount_point_pos_cpy[point_index].copy()
assigned_mount_angle[head_index] = mount_point_angle_cpy[point_index]
mount_point_index_cpy.pop(point_index)
mount_point_pos_cpy.pop(point_index)
mount_point_angle_cpy.pop(point_index)
dist, head_seq = dynamic_programming_cycle_path(assigned_placement, assigned_mount_point,
assigned_mount_angle)
if min_dist is None or dist < min_dist:
tmp_mount_point_pos, tmp_mount_point_index = mount_point_pos_cpy, mount_point_index_cpy
tmp_assigned_placement, tmp_assigned_head_seq = assigned_placement, head_seq
min_dist = dist
mount_point_pos, mount_point_index = tmp_mount_point_pos, tmp_mount_point_index
placement_result.append(tmp_assigned_placement)
head_sequence_result.append(tmp_assigned_head_seq)
return placement_result, head_sequence_result
# return placement_route_relink_heuristic(component_data, pcb_data, placement_result, head_sequence_result)
def placement_route_relink_heuristic(component_data, pcb_data, placement_result, head_sequence_result, hinter=True):
mount_point_pos, mount_point_angle, mount_point_index, mount_point_part = [], [], [], []
for i, data in pcb_data.iterrows():
component_index = component_data[component_data.part == data.part].index.tolist()[0]
# 记录贴装点序号索引和对应的位置坐标
mount_point_index.append(i)
mount_point_pos.append([data.x + stopper_pos[0], data.y + stopper_pos[1]])
mount_point_angle.append(data.r)
mount_point_part.append(component_index)
cycle_length, cycle_average_pos = [], []
for cycle, placement in enumerate(placement_result):
prev_pos, prev_angle = None, None
cycle_pos_list = []
cycle_length.append(0)
for idx, head in enumerate(head_sequence_result[cycle]):
point_index = placement[head]
if point_index == -1:
continue
pos = [mount_point_pos[point_index][0] - head * head_interval, mount_point_pos[point_index][1]]
angle = mount_point_angle[point_index]
cycle_pos_list.append(pos)
if prev_pos is not None:
if head_sequence_result[cycle][idx - 1] // 2 == head_sequence_result[cycle][idx] // 2: # 同轴
rotary_angle = prev_angle - angle
else:
rotary_angle = 0
cycle_length[-1] += max(axis_moving_time(prev_pos[0] - pos[0], 0),
axis_moving_time(prev_pos[1] - pos[1], 1), head_rotary_time(rotary_angle))
prev_pos, prev_angle = pos, angle
cycle_average_pos.append([sum(map(lambda pos: pos[0], cycle_pos_list)) / len(cycle_pos_list),
sum(map(lambda pos: pos[1], cycle_pos_list)) / len(cycle_pos_list)])
best_placement_result, best_head_sequence_result = copy.deepcopy(placement_result), copy.deepcopy(
head_sequence_result)
best_cycle_length, best_cycle_average_pos = copy.deepcopy(cycle_length), copy.deepcopy(cycle_average_pos)
n_runningtime, n_iteration = 10, 0
start_time = time.time()
with tqdm(total=n_runningtime, leave=False) as pbar:
pbar.set_description('swap heuristic process')
prev_time = start_time
while True:
n_iteration += 1
placement_result, head_sequence_result = copy.deepcopy(best_placement_result), copy.deepcopy(
best_head_sequence_result)
cycle_length = best_cycle_length.copy()
cycle_average_pos = copy.deepcopy(best_cycle_average_pos)
cycle_index = roulette_wheel_selection(cycle_length) # 根据周期加权移动距离随机选择周期
point_dist = [] # 周期内各贴装点距离中心位置的切氏距离
for head in head_sequence_result[cycle_index]:
point_index = placement_result[cycle_index][head]
_delta_x = abs(mount_point_pos[point_index][0] - head * head_interval - cycle_average_pos[cycle_index][0])
_delta_y = abs(mount_point_pos[point_index][1] - cycle_average_pos[cycle_index][1])
point_dist.append(max(_delta_x, _delta_y))
# 随机选择一个异常点
head_index = head_sequence_result[cycle_index][roulette_wheel_selection(point_dist)]
point_index = placement_result[cycle_index][head_index]
# 找距离该异常点最近的周期
min_dist = None
chg_cycle_index = -1
for idx in range(len(cycle_average_pos)):
if idx == cycle_index:
continue
dist_ = 0
component_type_check = False
for head in head_sequence_result[idx]:
dist_ += max(abs(mount_point_pos[placement_result[idx][head]][0] - mount_point_pos[point_index][0]),
abs(mount_point_pos[placement_result[idx][head]][1] - mount_point_pos[point_index][1]))
if mount_point_part[placement_result[idx][head]] == mount_point_part[point_index]:
component_type_check = True
if (min_dist is None or dist_ < min_dist) and component_type_check:
min_dist = dist_
chg_cycle_index = idx
assert chg_cycle_index != -1
chg_head, min_chg_dist = None, None
chg_cycle_point = []
for head in head_sequence_result[chg_cycle_index]:
index = placement_result[chg_cycle_index][head]
chg_cycle_point.append([mount_point_pos[index][0] - head * head_interval, mount_point_pos[index][1]])
for idx, head in enumerate(head_sequence_result[chg_cycle_index]):
chg_cycle_point_cpy = copy.deepcopy(chg_cycle_point)
index = placement_result[chg_cycle_index][head]
if mount_point_part[index] != mount_point_part[point_index]:
continue
chg_cycle_point_cpy[idx][0] = (mount_point_pos[index][0]) - head * head_interval
chg_dist = 0
aver_chg_pos = [sum(map(lambda x: x[0], chg_cycle_point_cpy)) / len(chg_cycle_point_cpy),
sum(map(lambda x: x[1], chg_cycle_point_cpy)) / len(chg_cycle_point_cpy)]
for pos in chg_cycle_point_cpy:
chg_dist += max(abs(aver_chg_pos[0] - pos[0]), abs(aver_chg_pos[1] - pos[1]))
# 更换后各点距离中心更近
if min_chg_dist is None or chg_dist < min_chg_dist:
chg_head = head
min_chg_dist = chg_dist
assert chg_head is not None
# === 第一轮变更周期chg_cycle_index的贴装点重排 ===
chg_placement_res = placement_result[chg_cycle_index].copy()
chg_placement_res[chg_head] = point_index
cycle_point_list = defaultdict(list)
for head, point in enumerate(chg_placement_res):
if point == -1:
continue
cycle_point_list[mount_point_part[point]].append(point)
for key, point_list in cycle_point_list.items():
cycle_point_list[key] = sorted(point_list, key=lambda p: mount_point_pos[p][0])
chg_placement_res, chg_point_assign_res = [], [[0, 0]] * max_head_index
chg_angle_res = [0] * max_head_index
for head, point_index in enumerate(placement_result[chg_cycle_index]):
if point_index == -1:
chg_placement_res.append(-1)
else:
part = mount_point_part[point_index]
chg_placement_res.append(cycle_point_list[part][0])
chg_point_assign_res[head] = mount_point_pos[cycle_point_list[part][0]].copy()
chg_angle_res[head] = mount_point_angle[cycle_point_list[part][0]]
cycle_point_list[part].pop(0)
chg_place_moving, chg_head_res = dynamic_programming_cycle_path(chg_placement_res, chg_point_assign_res, chg_angle_res)
# === 第二轮原始周期cycle_index的贴装点重排 ===
placement_res = placement_result[cycle_index].copy()
placement_res[head_index] = placement_result[chg_cycle_index][chg_head]
for point in placement_res:
if point == -1:
continue
cycle_point_list[mount_point_part[point]].append(point)
for key, point_list in cycle_point_list.items():
cycle_point_list[key] = sorted(point_list, key=lambda p: mount_point_pos[p][0])
placement_res, point_assign_res = [], [[0, 0]] * max_head_index
angle_assign_res = [0] * max_head_index
for head, point_index in enumerate(placement_result[cycle_index]):
if point_index == -1:
placement_res.append(-1)
else:
part = mount_point_part[point_index]
placement_res.append(cycle_point_list[part][0])
point_assign_res[head] = mount_point_pos[cycle_point_list[part][0]].copy()
angle_assign_res[head] = mount_point_angle[cycle_point_list[part][0]]
cycle_point_list[part].pop(0)
place_moving, place_head_res = dynamic_programming_cycle_path(placement_res, point_assign_res, angle_assign_res)
# 更新贴装顺序分配结果
placement_result[cycle_index], head_sequence_result[cycle_index] = placement_res, place_head_res
placement_result[chg_cycle_index], head_sequence_result[chg_cycle_index] = chg_placement_res, chg_head_res
# 更新移动路径
cycle_length[cycle_index], cycle_length[chg_cycle_index] = place_moving, chg_place_moving
# 更新平均坐标和最大偏离点索引
point_list, point_index_list = [], []
for head in head_sequence_result[cycle_index]:
point_index_list.append(placement_result[cycle_index][head])
point_pos = mount_point_pos[point_index_list[-1]].copy()
point_pos[0] -= head * head_interval
point_list.append(point_pos)
cycle_average_pos[cycle_index] = [sum(map(lambda x: x[0], point_list)) / len(point_list),
sum(map(lambda x: x[1], point_list)) / len(point_list)]
point_list, point_index_list = [], []
for head in head_sequence_result[chg_cycle_index]:
point_index_list.append(placement_result[chg_cycle_index][head])
point_pos = mount_point_pos[point_index_list[-1]].copy()
point_pos[0] -= head * head_interval
point_list.append(point_pos)
cycle_average_pos[chg_cycle_index] = [sum(map(lambda x: x[0], point_list)) / len(point_list),
sum(map(lambda x: x[1], point_list)) / len(point_list)]
if sum(cycle_length) < sum(best_cycle_length):
best_cycle_length = cycle_length.copy()
best_cycle_average_pos = copy.deepcopy(cycle_average_pos)
best_placement_result, best_head_sequence_result = copy.deepcopy(placement_result), copy.deepcopy(
head_sequence_result)
cur_time = time.time()
if cur_time - start_time > n_runningtime:
break
pbar.update(cur_time - prev_time)
prev_time = cur_time
# print("number of iteration: ", n_iteration)
return best_placement_result, best_head_sequence_result