Merge branch 'master' of github.com:hit-lu/assembly_line_optimizer

# Conflicts:
#	optimizer_genetic.py
This commit is contained in:
2023-08-31 22:13:06 +08:00
12 changed files with 425 additions and 539 deletions

339
LICENSE
View File

@ -1,339 +0,0 @@
GNU GENERAL PUBLIC LICENSE
Version 2, June 1991
Copyright (C) 1989, 1991 Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
Preamble
The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change free
software--to make sure the software is free for all its users. This
General Public License applies to most of the Free Software
Foundation's software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is covered by
the GNU Lesser General Public License instead.) You can apply it to
your programs, too.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.
To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.
For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights that
you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their
rights.
We protect your rights with two steps: (1) copyright the software, and
(2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.
Also, for each author's protection and ours, we want to make certain
that everyone understands that there is no warranty for this free
software. If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original
authors' reputations.
Finally, any free program is threatened constantly by software
patents. We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone's free use or not licensed at all.
The precise terms and conditions for copying, distribution and
modification follow.
GNU GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
0. This License applies to any program or other work which contains
a notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The "Program", below,
refers to any such program or work, and a "work based on the Program"
means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another
language. (Hereinafter, translation is included without limitation in
the term "modification".) Each licensee is addressed as "you".
Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the
Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.
1. You may copy and distribute verbatim copies of the Program's
source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License
along with the Program.
You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a fee.
2. You may modify your copy or copies of the Program or any portion
of it, thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:
a) You must cause the modified files to carry prominent notices
stating that you changed the files and the date of any change.
b) You must cause any work that you distribute or publish, that in
whole or in part contains or is derived from the Program or any
part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.
c) If the modified program normally reads commands interactively
when run, you must cause it, when started running for such
interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a
notice that there is no warranty (or else, saying that you provide
a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this
License. (Exception: if the Program itself is interactive but
does not normally print such an announcement, your work based on
the Program is not required to print an announcement.)
These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Program,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote it.
Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Program.
In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.
3. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you also do one of the following:
a) Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sections
1 and 2 above on a medium customarily used for software interchange; or,
b) Accompany it with a written offer, valid for at least three
years, to give any third party, for a charge no more than your
cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,
c) Accompany it with the information you received as to the offer
to distribute corresponding source code. (This alternative is
allowed only for noncommercial distribution and only if you
received the program in object code or executable form with such
an offer, in accord with Subsection b above.)
The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source
code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as a
special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component
itself accompanies the executable.
If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.
4. You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such
parties remain in full compliance.
5. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Program or works based on it.
6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to
this License.
7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.
If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended to
apply and the section as a whole is intended to apply in other
circumstances.
It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.
This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.
8. If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates
the limitation as if written in the body of this License.
9. The Free Software Foundation may publish revised and/or new versions
of the General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and "any
later version", you have the option of following the terms and conditions
either of that version or of any later version published by the Free
Software Foundation. If the Program does not specify a version number of
this License, you may choose any version ever published by the Free Software
Foundation.
10. If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to the author
to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes
make exceptions for this. Our decision will be guided by the two goals
of preserving the free status of all derivatives of our free software and
of promoting the sharing and reuse of software generally.
NO WARRANTY
11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.
12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.
<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
Also add information on how to contact you by electronic and paper mail.
If the program is interactive, make it output a short notice like this
when it starts in an interactive mode:
Gnomovision version 69, Copyright (C) year name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.
The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, the commands you use may
be called something other than `show w' and `show c'; they could even be
mouse-clicks or menu items--whatever suits your program.
You should also get your employer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer" for the program, if
necessary. Here is a sample; alter the names:
Yoyodyne, Inc., hereby disclaims all copyright interest in the program
`Gnomovision' (which makes passes at compilers) written by James Hacker.
<signature of Ty Coon>, 1 April 1989
Ty Coon, President of Vice
This General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may
consider it more useful to permit linking proprietary applications with the
library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License.

View File

@ -1,15 +1,18 @@
from base_optimizer.optimizer_common import * from base_optimizer.optimizer_common import *
from ortools.sat.python import cp_model from gurobipy import *
from collections import defaultdict from collections import defaultdict
def list_range(start, end=None):
return list(range(start)) if end is None else list(range(start, end))
@timer_wrapper @timer_wrapper
def optimizer_aggregation(component_data, pcb_data): def optimizer_aggregation(component_data, pcb_data):
# === phase 0: data preparation === # === phase 0: data preparation ===
M = 1000 # a sufficient large number M = 1000 # a sufficient large number
a, b = 1, 6 # coefficient a, b = 1, 6 # coefficient
K, I, J, L = max_head_index, 0, 0, 0 # the maximum number of heads, component types, nozzle types and batch level
component_list, nozzle_list = defaultdict(int), defaultdict(int) component_list, nozzle_list = defaultdict(int), defaultdict(int)
cpidx_2_part, nzidx_2_nozzle = {}, {} cpidx_2_part, nzidx_2_nozzle = {}, {}
@ -26,10 +29,11 @@ def optimizer_aggregation(component_data, pcb_data):
nzidx_2_nozzle[len(nzidx_2_nozzle)] = nozzle nzidx_2_nozzle[len(nzidx_2_nozzle)] = nozzle
nozzle_list[nozzle] += 1 nozzle_list[nozzle] += 1
I, J = len(component_list.keys()), len(nozzle_list.keys()) I, J = len(component_list.keys()), len(nozzle_list.keys()) # the maximum number of component types and nozzle types
L = I + 1 L = I + 1 # the maximum number of batch level
HC = [[M for _ in range(J)] for _ in range(I)] # the handing class when component i is handled by nozzle type j K = max_head_index # the maximum number of heads
# represent the nozzle-component compatibility HC = [[M for _ in range(J)] for _ in range(I)] # represent the nozzle-component compatibility
for i in range(I): for i in range(I):
for _, item in enumerate(cpidx_2_part.items()): for _, item in enumerate(cpidx_2_part.items()):
index, part = item index, part = item
@ -41,105 +45,71 @@ def optimizer_aggregation(component_data, pcb_data):
HC[index][j] = 0 HC[index][j] = 0
# === phase 1: mathematical model solver === # === phase 1: mathematical model solver ===
model = cp_model.CpModel() mdl = Model('SMT')
solver = cp_model.CpSolver() mdl.setParam('OutputFlag', 0)
# === Decision Variables === # === Decision Variables ===
# the number of components of type i that are placed by nozzle type j on placement head k # the number of components of type i that are placed by nozzle type j on placement head k
X = {} X = mdl.addVars(list_range(I), list_range(J), list_range(K), vtype=GRB.INTEGER, ub=max(component_list.values()))
for i in range(I):
for j in range(J):
for k in range(K):
X[i, j, k] = model.NewIntVar(0, component_list[cpidx_2_part[i]], 'X_{}_{}_{}'.format(i, j, k))
# the total number of nozzle changes on placement head k # the total number of nozzle changes on placement head k
N = {} N = mdl.addVars(list_range(K), vtype=GRB.INTEGER)
for k in range(K):
N[k] = model.NewIntVar(0, J, 'N_{}'.format(k))
# the largest workload of all placement heads # the largest workload of all placement heads
WL = model.NewIntVar(0, len(pcb_data), 'WL') WL = mdl.addVar(vtype=GRB.INTEGER, lb=0, ub=len(pcb_data))
# whether batch Xijk is placed on level l # whether batch Xijk is placed on level l
Z = {} Z = mdl.addVars(list_range(I), list_range(J), list_range(L), list_range(K), vtype=GRB.BINARY)
for i in range(I):
for j in range(J):
for l in range(L):
for k in range(K):
Z[i, j, l, k] = model.NewBoolVar('Z_{}_{}_{}_{}'.format(i, j, l, k))
# Dlk := 2 if a change of nozzles in the level l + 1 on placement head k # Dlk := 2 if a change of nozzles in the level l + 1 on placement head k
# Dlk := 1 if there are no batches placed on levels higher than l # Dlk := 1 if there are no batches placed on levels higher than l
D = {} # Dlk := 0 otherwise
for l in range(L): D = mdl.addVars(list_range(L), list_range(K), vtype=GRB.BINARY, ub=2)
for k in range(K): D_plus = mdl.addVars(list_range(L), list_range(J), list_range(K), vtype=GRB.INTEGER)
D[l, k] = model.NewIntVar(0, 2, 'D_{}_{}'.format(l, k)) D_minus = mdl.addVars(list_range(L), list_range(J), list_range(K), vtype=GRB.INTEGER)
D_abs = {}
for l in range(L):
for j in range(J):
for k in range(K):
D_abs[l, j, k] = model.NewIntVar(0, M, 'D_abs_{}_{}_{}'.format(l, j, k))
# == Objective function === # == Objective function ===
model.Minimize(a * WL + b * sum(N[k] for k in range(K))) mdl.modelSense = GRB.MINIMIZE
mdl.setObjective(a * WL + b * quicksum(N[k] for k in range(K)))
# === Constraint === # === Constraint ===
for i in range(I): mdl.addConstrs(
model.Add(sum(X[i, j, k] for j in range(J) for k in range(K)) == component_list[cpidx_2_part[i]]) quicksum(X[i, j, k] for j in range(J) for k in range(K)) == component_list[cpidx_2_part[i]] for i in range(I))
for k in range(K): mdl.addConstrs(quicksum(X[i, j, k] for i in range(I) for j in range(J)) <= WL for k in range(K))
model.Add(sum(X[i, j, k] for i in range(I) for j in range(J)) <= WL)
for i in range(I): mdl.addConstrs(
for j in range(J): X[i, j, k] <= M * quicksum(Z[i, j, l, k] for l in range(L)) for i in range(I) for j in range(J) for k in
for k in range(K): range(K))
model.Add(X[i, j, k] <= M * sum(Z[i, j, l, k] for l in range(L)))
for i in range(I): mdl.addConstrs(quicksum(Z[i, j, l, k] for l in range(L)) <= 1 for i in range(I) for j in range(J) for k in range(K))
for j in range(J): mdl.addConstrs(
for k in range(K): quicksum(Z[i, j, l, k] for l in range(L)) <= X[i, j, k] for i in range(I) for j in range(J) for k in range(K))
model.Add(sum(Z[i, j, l, k] for l in range(L)) <= 1)
for i in range(I): mdl.addConstrs(quicksum(Z[i, j, l, k] for j in range(J) for i in range(I)) >= quicksum(
for j in range(J): Z[i, j, l + 1, k] for j in range(J) for i in range(I)) for k in range(K) for l in range(L - 1))
for k in range(K):
model.Add(sum(Z[i, j, l, k] for l in range(L)) <= X[i, j, k])
for k in range(K): mdl.addConstrs(quicksum(Z[i, j, l, k] for i in range(I) for j in range(J)) <= 1 for k in range(K) for l in range(L))
for l in range(L - 1): mdl.addConstrs(D_plus[l, j, k] - D_minus[l, j, k] == quicksum(Z[i, j, l, k] for i in range(I)) - quicksum(
model.Add(sum(Z[i, j, l, k] for j in range(J) for i in range(I)) >= sum( Z[i, j, l + 1, k] for i in range(I)) for l in range(L - 1) for j in range(J) for k in range(K))
Z[i, j, l + 1, k] for j in range(J) for i in range(I)))
for l in range(I): mdl.addConstrs(
for k in range(K): D[l, k] == quicksum((D_plus[l, j, k] + D_minus[l, j, k]) for j in range(J)) for k in range(K) for l in
model.Add(sum(Z[i, j, l, k] for i in range(I) for j in range(J)) <= 1) range(L))
for l in range(L - 1): mdl.addConstrs(2 * N[k] == quicksum(D[l, k] for l in range(L)) - 1 for k in range(K))
for j in range(J): mdl.addConstrs(
for k in range(K): 0 >= quicksum(HC[i][j] * Z[i, j, l, k] for i in range(I) for j in range(J)) for l in range(L) for k in range(K))
model.AddAbsEquality(D_abs[l, j, k],
sum(Z[i, j, l, k] for i in range(I)) - sum(Z[i, j, l + 1, k] for i in range(I)))
for k in range(K):
for l in range(L):
model.Add(D[l, k] == sum(D_abs[l, j, k] for j in range(J)))
for k in range(K):
model.Add(N[k] == sum(D[l, k] for l in range(L)) - 1)
for l in range(L):
for k in range(K):
model.Add(0 >= sum(HC[i][j] * Z[i, j, l, k] for i in range(I) for j in range(J)))
# === Main Process === # === Main Process ===
component_result, cycle_result = [], [] component_result, cycle_result = [], []
feeder_slot_result, placement_result, head_sequence = [], [], [] feeder_slot_result, placement_result, head_sequence = [], [], []
solver.parameters.max_time_in_seconds = 20.0 mdl.setParam("TimeLimit", 100)
status = solver.Solve(model) mdl.optimize()
if status == cp_model.OPTIMAL or status == cp_model.FEASIBLE:
print('total cost = {}'.format(solver.ObjectiveValue())) if mdl.Status == GRB.OPTIMAL:
print('total cost = {}'.format(mdl.objval))
# convert cp model solution to standard output # convert cp model solution to standard output
model_cycle_result, model_component_result = [], [] model_cycle_result, model_component_result = [], []
@ -149,9 +119,9 @@ def optimizer_aggregation(component_data, pcb_data):
for k in range(K): for k in range(K):
for i in range(I): for i in range(I):
for j in range(J): for j in range(J):
if solver.BooleanValue(Z[i, j, l, k]) != 0: if abs(Z[i, j, l, k].x - 1) <= 1e-3:
model_component_result[-1][k] = cpidx_2_part[i] model_component_result[-1][k] = cpidx_2_part[i]
model_cycle_result[-1][k] = solver.Value(X[i, j, k]) model_cycle_result[-1][k] = round(X[i, j, k].x)
# remove redundant term # remove redundant term
if sum(model_cycle_result[-1]) == 0: if sum(model_cycle_result[-1]) == 0:
@ -209,7 +179,6 @@ def optimizer_aggregation(component_data, pcb_data):
if component_result[cycle_idx][head] == -1: if component_result[cycle_idx][head] == -1:
continue continue
index_ = component_result[cycle_idx][head] index_ = component_result[cycle_idx][head]
placement_result[-1][head] = mount_point_pos[index_][-1][2] placement_result[-1][head] = mount_point_pos[index_][-1][2]
mount_point_pos[index_].pop() mount_point_pos[index_].pop()
head_sequence.append(dynamic_programming_cycle_path(pcb_data, placement_result[-1], feeder_slot_result[cycle_idx])) head_sequence.append(dynamic_programming_cycle_path(pcb_data, placement_result[-1], feeder_slot_result[cycle_idx]))

View File

@ -49,6 +49,12 @@ feeder_width = {'SM8': (7.25, 7.25), 'SM12': (7.00, 20.00), 'SM16': (7.00, 22.00
# 可用吸嘴数量限制 # 可用吸嘴数量限制
nozzle_limit = {'CN065': 6, 'CN040': 6, 'CN220': 6, 'CN400': 6, 'CN140': 6} nozzle_limit = {'CN065': 6, 'CN040': 6, 'CN220': 6, 'CN400': 6, 'CN140': 6}
# 时间参数
t_cycle = 0.3
t_pick, t_place = .078, .051 # 贴装/拾取用时
t_nozzle_put, t_nozzle_pick = 0.9, 0.75 # 装卸吸嘴用时
t_nozzle_change = t_nozzle_put + t_nozzle_pick
t_fix_camera_check = 0.12 # 固定相机检测时间
def axis_moving_time(distance, axis=0): def axis_moving_time(distance, axis=0):
distance = abs(distance) * 1e-3 distance = abs(distance) * 1e-3
@ -880,7 +886,7 @@ def constraint_swap_mutation(component_points, individual):
offspring = individual.copy() offspring = individual.copy()
idx, component_index = 0, random.randint(0, len(component_points) - 1) idx, component_index = 0, random.randint(0, len(component_points) - 1)
for points in component_points.values(): for _, points in component_points:
if component_index == 0: if component_index == 0:
while True: while True:
index1, index2 = random.sample(range(points + max_machine_index - 2), 2) index1, index2 = random.sample(range(points + max_machine_index - 2), 2)

View File

@ -2,7 +2,7 @@ from base_optimizer.optimizer_common import *
@timer_wrapper @timer_wrapper
def feeder_allocate(component_data, pcb_data, feeder_data, nozzle_pattern, figure=False): def feeder_allocate(component_data, pcb_data, feeder_data, figure=False):
feeder_points, feeder_division_points = defaultdict(int), defaultdict(int) # 供料器贴装点数 feeder_points, feeder_division_points = defaultdict(int), defaultdict(int) # 供料器贴装点数
mount_center_pos = defaultdict(int) mount_center_pos = defaultdict(int)

View File

@ -234,8 +234,8 @@ def cal_individual_val(component_nozzle, component_point_pos, designated_nozzle,
return V[-1], pickup_result, pickup_cycle_result return V[-1], pickup_result, pickup_cycle_result
def convert_individual_2_result(component_data, component_point_pos, designated_nozzle, pickup_group, pickup_group_cycle, def convert_individual_2_result(component_data, component_point_pos, designated_nozzle, pickup_group,
pair_group, feeder_lane, individual): pickup_group_cycle, pair_group, feeder_lane, individual):
component_result, cycle_result, feeder_slot_result = [], [], [] component_result, cycle_result, feeder_slot_result = [], [], []
placement_result, head_sequence_result = [], [] placement_result, head_sequence_result = [], []
@ -418,19 +418,19 @@ def optimizer_hybrid_genetic(pcb_data, component_data, hinter=True):
pick_part = pickup[pickup_index] pick_part = pickup[pickup_index]
# 检查槽位占用情况 # 检查槽位占用情况
if feeder_lane[slot] is not None and pick_part is not None: if feeder_lane[slot] and pick_part:
assign_available = False assign_available = False
break break
# 检查机械限位冲突 # 检查机械限位冲突
if pick_part is not None and (slot - CT_Head[pick_part][0] * interval_ratio <= 0 or if pick_part and (slot - CT_Head[pick_part][0] * interval_ratio <= 0 or slot + (
slot + (max_head_index - CT_Head[pick_part][1] - 1) * interval_ratio > max_slot_index // 2): max_head_index - CT_Head[pick_part][1] - 1) * interval_ratio > max_slot_index // 2):
assign_available = False assign_available = False
break break
if assign_available: if assign_available:
for idx, component in enumerate(pickup): for idx, component in enumerate(pickup):
if component is not None: if component:
feeder_lane[assign_slot + idx * interval_ratio] = component feeder_lane[assign_slot + idx * interval_ratio] = component
CT_Group_slot[CTIdx] = assign_slot CT_Group_slot[CTIdx] = assign_slot
break break
@ -509,32 +509,31 @@ def optimizer_hybrid_genetic(pcb_data, component_data, hinter=True):
with tqdm(total=n_generations) as pbar: with tqdm(total=n_generations) as pbar:
pbar.set_description('hybrid genetic process') pbar.set_description('hybrid genetic process')
for _ in range(n_generations):
# calculate fitness value # calculate fitness value
pop_val = [] pop_val = []
for pop_idx, individual in enumerate(population): for pop_idx, individual in enumerate(population):
val, _, _ = cal_individual_val(component_nozzle, component_point_pos, designated_nozzle, pickup_group, val, _, _ = cal_individual_val(component_nozzle, component_point_pos, designated_nozzle, pickup_group,
pickup_group_cycle, pair_group, feeder_part_arrange, individual) pickup_group_cycle, pair_group, feeder_part_arrange, individual)
pop_val.append(val) pop_val.append(val) # val is related to assembly time
idx = np.argmin(pop_val) for _ in range(n_generations):
if len(best_pop_val) == 0 or pop_val[idx] < best_pop_val[-1]: # idx = np.argmin(pop_val)
best_individual = copy.deepcopy(population[idx]) # if len(best_pop_val) == 0 or pop_val[idx] < best_pop_val[-1]:
best_pop_val.append(pop_val[idx]) # best_individual = copy.deepcopy(population[idx])
# best_pop_val.append(pop_val[idx])
# min-max convert # min-max convert
max_val = 1.5 * max(pop_val) max_val = 1.5 * max(pop_val)
pop_val = list(map(lambda v: max_val - v, pop_val)) convert_pop_val = list(map(lambda v: max_val - v, pop_val))
# crossover and mutation # crossover and mutation
c = 0 c = 0
new_population = [] new_population, new_pop_val = [], []
for pop in range(population_size): for pop in range(population_size):
if pop % 2 == 0 and np.random.random() < crossover_rate: if pop % 2 == 0 and np.random.random() < crossover_rate:
index1, index2 = roulette_wheel_selection(pop_val), -1 index1, index2 = roulette_wheel_selection(convert_pop_val), -1
while True: while True:
index2 = roulette_wheel_selection(pop_val) index2 = roulette_wheel_selection(convert_pop_val)
if index1 != index2: if index1 != index2:
break break
# 两点交叉算子 # 两点交叉算子
@ -552,13 +551,27 @@ def optimizer_hybrid_genetic(pcb_data, component_data, hinter=True):
new_population.append(offspring1) new_population.append(offspring1)
new_population.append(offspring2) new_population.append(offspring2)
# selection val, _, _ = cal_individual_val(component_nozzle, component_point_pos, designated_nozzle,
top_k_index = get_top_k_value(pop_val, population_size - len(new_population)) pickup_group,
pickup_group_cycle, pair_group, feeder_part_arrange, offspring1)
new_pop_val.append(val)
val, _, _ = cal_individual_val(component_nozzle, component_point_pos, designated_nozzle,
pickup_group,
pickup_group_cycle, pair_group, feeder_part_arrange, offspring2)
new_pop_val.append(val)
# generate next generation
top_k_index = get_top_k_value(pop_val, population_size - len(new_population), reverse=False)
for index in top_k_index: for index in top_k_index:
new_population.append(population[index]) new_population.append(population[index])
new_pop_val.append(pop_val[index])
population = new_population population = new_population
pop_val = new_pop_val
pbar.update(1) pbar.update(1)
best_individual = population[np.argmin(pop_val)]
return convert_individual_2_result(component_data, component_point_pos, designated_nozzle, pickup_group, return convert_individual_2_result(component_data, component_point_pos, designated_nozzle, pickup_group,
pickup_group_cycle, pair_group, feeder_lane, best_individual) pickup_group_cycle, pair_group, feeder_lane, best_individual)

View File

@ -3,11 +3,11 @@ from base_optimizer.optimizer_common import *
@timer_wrapper @timer_wrapper
def optimizer_scanbased(component_data, pcb_data, hinter): def optimizer_genetic_scanning(component_data, pcb_data, hinter):
population_size = 200 # 种群规模 population_size = 200 # 种群规模
crossover_rate, mutation_rate = .4, .02 crossover_rate, mutation_rate = .4, .02
n_generation = 5 n_generation = 500
component_points = [0] * len(component_data) component_points = [0] * len(component_data)
for i in range(len(pcb_data)): for i in range(len(pcb_data)):
@ -31,50 +31,52 @@ def optimizer_scanbased(component_data, pcb_data, hinter):
pop_val.append(feeder_arrange_evaluate(feeder_slot_result, cycle_result)) pop_val.append(feeder_arrange_evaluate(feeder_slot_result, cycle_result))
# todo: 过程写的有问题,暂时不想改 sigma_scaling(pop_val, 1)
with tqdm(total=n_generation) as pbar: with tqdm(total=n_generation) as pbar:
pbar.set_description('hybrid genetic process') pbar.set_description('hybrid genetic process')
new_pop_val, new_pop_individual = [], []
# min-max convert
max_val = 1.5 * max(pop_val)
convert_pop_val = list(map(lambda v: max_val - v, pop_val))
for _ in range(n_generation): for _ in range(n_generation):
# 交叉 # 交叉
for pop in range(population_size): for pop in range(population_size):
if pop % 2 == 0 and np.random.random() < crossover_rate: if pop % 2 == 0 and np.random.random() < crossover_rate:
index1, index2 = roulette_wheel_selection(pop_val), -1 index1, index2 = roulette_wheel_selection(convert_pop_val), -1
while True: while True:
index2 = roulette_wheel_selection(pop_val) index2 = roulette_wheel_selection(convert_pop_val)
if index1 != index2: if index1 != index2:
break break
# 两点交叉算子 # 两点交叉算子
offspring1, offspring2 = cycle_crossover(pop_individual[index1], pop_individual[index2]) offspring1, offspring2 = cycle_crossover(pop_individual[index1], pop_individual[index2])
_, cycle_result, feeder_slot_result = convert_individual_2_result(component_points, offspring1)
pop_val.append(feeder_arrange_evaluate(feeder_slot_result, cycle_result))
pop_individual.append(offspring1)
_, cycle_result, feeder_slot_result = convert_individual_2_result(component_points, offspring2)
pop_val.append(feeder_arrange_evaluate(feeder_slot_result, cycle_result))
pop_individual.append(offspring2)
sigma_scaling(pop_val, 1)
# 变异 # 变异
if np.random.random() < mutation_rate: if np.random.random() < mutation_rate:
index_ = roulette_wheel_selection(pop_val) offspring1 = swap_mutation(offspring1)
offspring = swap_mutation(pop_individual[index_])
_, cycle_result, feeder_slot_result = convert_individual_2_result(component_points, offspring)
pop_val.append(feeder_arrange_evaluate(feeder_slot_result, cycle_result)) if np.random.random() < mutation_rate:
pop_individual.append(offspring) offspring2 = swap_mutation(offspring2)
_, cycle_result, feeder_slot_result = convert_individual_2_result(component_points, offspring1)
new_pop_val.append(feeder_arrange_evaluate(feeder_slot_result, cycle_result))
new_pop_individual.append(offspring1)
_, cycle_result, feeder_slot_result = convert_individual_2_result(component_points, offspring2)
new_pop_val.append(feeder_arrange_evaluate(feeder_slot_result, cycle_result))
new_pop_individual.append(offspring2)
# generate next generation
top_k_index = get_top_k_value(pop_val, population_size - len(new_pop_individual), reverse=False)
for index in top_k_index:
new_pop_individual.append(pop_individual[index])
new_pop_val.append(pop_val[index])
pop_individual, pop_val = new_pop_individual, new_pop_val
sigma_scaling(pop_val, 1) sigma_scaling(pop_val, 1)
new_population, new_popval = [], []
for index in get_top_k_value(pop_val, population_size):
new_population.append(pop_individual[index])
new_popval.append(pop_val[index])
pop_individual, pop_val = new_population, new_popval
# select the best individual # select the best individual
pop = np.argmin(pop_val) pop = np.argmin(pop_val)
component_result, cycle_result, feeder_slot_result = convert_individual_2_result(component_points, pop_individual[pop]) component_result, cycle_result, feeder_slot_result = convert_individual_2_result(component_points, pop_individual[pop])
@ -98,7 +100,6 @@ def convert_individual_2_result(component_points, pop):
feeder_part[gene], feeder_base_points[gene] = idx, component_points[idx] feeder_part[gene], feeder_base_points[gene] = idx, component_points[idx]
# TODO: 暂时未考虑可用吸嘴数的限制 # TODO: 暂时未考虑可用吸嘴数的限制
# for _ in range(math.ceil(sum(component_points) / max_head_index)):
while True: while True:
# === 周期内循环 === # === 周期内循环 ===
assigned_part = [-1 for _ in range(max_head_index)] # 当前扫描到的头分配元件信息 assigned_part = [-1 for _ in range(max_head_index)] # 当前扫描到的头分配元件信息

View File

@ -27,7 +27,7 @@ def load_data(filename: str, default_feeder_limit=1, load_cp_data=True, load_fee
# 注册元件检查 # 注册元件检查
part_feeder_assign = defaultdict(set) part_feeder_assign = defaultdict(set)
part_col = ["part", "desc", "fdr", "nz", 'camera', 'group', 'feeder-limit'] part_col = ["part", "desc", "fdr", "nz", 'camera', 'group', 'feeder-limit', 'points']
try: try:
if load_cp_data: if load_cp_data:
component_data = pd.DataFrame(pd.read_csv(filepath_or_buffer='component.txt', sep='\t', header=None), component_data = pd.DataFrame(pd.read_csv(filepath_or_buffer='component.txt', sep='\t', header=None),
@ -40,18 +40,18 @@ def load_data(filename: str, default_feeder_limit=1, load_cp_data=True, load_fee
for _, data in pcb_data.iterrows(): for _, data in pcb_data.iterrows():
part, nozzle = data.part, data.nz.split(' ')[1] part, nozzle = data.part, data.nz.split(' ')[1]
slot = data['fdr'].split(' ')[0] slot = data['fdr'].split(' ')[0]
if part not in component_data['part'].values: if part not in component_data['part'].values:
if not cp_auto_register: if not cp_auto_register:
raise Exception("unregistered component: " + component_data['part'].values) raise Exception("unregistered component: " + component_data['part'].values)
else: else:
component_data = pd.concat([component_data, pd.DataFrame( component_data = pd.concat([component_data, pd.DataFrame(
[part, '', 'SM8', nozzle, '飞行相机1', 'CHIP-Rect', default_feeder_limit], index=part_col).T], [part, '', 'SM8', nozzle, '飞行相机1', 'CHIP-Rect', default_feeder_limit, 0], index=part_col).T],
ignore_index=True) ignore_index=True)
# warning_info = 'register component ' + part + ' with default feeder type' # warning_info = 'register component ' + part + ' with default feeder type'
# warnings.warn(warning_info, UserWarning) # warnings.warn(warning_info, UserWarning)
part_index = component_data[component_data['part'] == part].index.tolist()[0] part_index = component_data[component_data['part'] == part].index.tolist()[0]
part_feeder_assign[part].add(slot) part_feeder_assign[part].add(slot)
component_data.loc[part_index]['points'] += 1
if nozzle != 'A' and component_data.loc[part_index]['nz'] != nozzle: if nozzle != 'A' and component_data.loc[part_index]['nz'] != nozzle:
warning_info = 'the nozzle type of component ' + part + ' is not consistent with the pcb data' warning_info = 'the nozzle type of component ' + part + ' is not consistent with the pcb data'
@ -64,9 +64,8 @@ def load_data(filename: str, default_feeder_limit=1, load_cp_data=True, load_fee
# 读取供料器基座数据 # 读取供料器基座数据
feeder_data = pd.DataFrame(columns=['slot', 'part', 'arg']) # arg表示是否为预分配不表示分配数目 feeder_data = pd.DataFrame(columns=['slot', 'part', 'arg']) # arg表示是否为预分配不表示分配数目
if load_feeder_data: if load_feeder_data:
for data in pcb_data.iterrows(): for _, data in pcb_data.iterrows():
fdr = data[1]['fdr'] slot, part = data['fdr'].split(' ')
slot, part = fdr.split(' ')
if slot[0] != 'F' and slot[0] != 'R': if slot[0] != 'F' and slot[0] != 'R':
continue continue
slot = int(slot[1:]) if slot[0] == 'F' else int(slot[1:]) + max_slot_index // 2 slot = int(slot[1:]) if slot[0] == 'F' else int(slot[1:]) + max_slot_index // 2
@ -80,6 +79,5 @@ def load_data(filename: str, default_feeder_limit=1, load_cp_data=True, load_fee
feeder_data.sort_values(by='slot', ascending=True, inplace=True, ignore_index=True) feeder_data.sort_values(by='slot', ascending=True, inplace=True, ignore_index=True)
# plt.scatter(pcb_data["x"], pcb_data["y"]) pcb_data = pcb_data.sort_values(by="x", ascending=False)
# plt.show()
return pcb_data, component_data, feeder_data return pcb_data, component_data, feeder_data

View File

@ -1,24 +1,34 @@
import copy
import math import math
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
import pandas as pd import pandas as pd
from base_optimizer.optimizer_aggregation import *
from base_optimizer.optimizer_scanbased import * from base_optimizer.optimizer_scanbased import *
from base_optimizer.optimizer_celldivision import * from base_optimizer.optimizer_celldivision import *
from base_optimizer.optimizer_hybridgenetic import * from base_optimizer.optimizer_hybridgenetic import *
from base_optimizer.optimizer_feederpriority import * from base_optimizer.optimizer_feederpriority import *
from dataloader import * from dataloader import *
from optimizer_genetic import * from optimizer_genetic import *
from optimizer_heuristic import * from optimizer_heuristic import *
def optimizer(pcb_data, component_data, assembly_line_optimizer, single_machine_optimizer): def deviation(data):
assignment_result = assemblyline_optimizer_genetic(pcb_data, component_data) assert len(data) > 0
average, variance = sum(data) / len(data), 0
for v in data:
variance += (v - average) ** 2
return variance / len(data)
# assignment_result = [[0, 0, 0, 0, 216, 0, 0], [0, 0, 0, 0, 216, 0, 0], [36, 24, 12, 12, 0, 36, 12]]
def optimizer(pcb_data, component_data, assembly_line_optimizer, single_machine_optimizer):
# todo: 由于吸嘴更换更因素的存在在处理PCB8数据时遗传算法因在负载均衡过程中对这一因素进行了考虑性能更优
# assignment_result = assemblyline_optimizer_heuristic(pcb_data, component_data)
assignment_result = assemblyline_optimizer_genetic(pcb_data, component_data)
print(assignment_result)
assignment_result_cpy = copy.deepcopy(assignment_result)
placement_points, placement_time = [], [] placement_points, placement_time = [], []
partial_pcb_data, partial_component_data = defaultdict(pd.DataFrame), defaultdict(pd.DataFrame) partial_pcb_data, partial_component_data = defaultdict(pd.DataFrame), defaultdict(pd.DataFrame)
for machine_index in range(max_machine_index): for machine_index in range(max_machine_index):
@ -26,7 +36,9 @@ def optimizer(pcb_data, component_data, assembly_line_optimizer, single_machine_
partial_component_data[machine_index] = component_data.copy(deep=True) partial_component_data[machine_index] = component_data.copy(deep=True)
placement_points.append(sum(assignment_result[machine_index])) placement_points.append(sum(assignment_result[machine_index]))
# averagely assign available feeder assert sum(placement_points) == len(pcb_data)
# === averagely assign available feeder ===
for part_index, data in component_data.iterrows(): for part_index, data in component_data.iterrows():
feeder_limit = data['feeder-limit'] feeder_limit = data['feeder-limit']
feeder_points = [assignment_result[machine_index][part_index] for machine_index in range(max_machine_index)] feeder_points = [assignment_result[machine_index][part_index] for machine_index in range(max_machine_index)]
@ -49,11 +61,14 @@ def optimizer(pcb_data, component_data, assembly_line_optimizer, single_machine_
partial_component_data[machine_index].loc[part_index]['feeder-limit'] += 1 partial_component_data[machine_index].loc[part_index]['feeder-limit'] += 1
feeder_limit -= 1 feeder_limit -= 1
for machine_index in range(max_machine_index):
if feeder_points[machine_index] > 0:
assert partial_component_data[machine_index].loc[part_index]['feeder-limit'] > 0
# === assign placements ===
component_machine_index = [0 for _ in range(len(component_data))] component_machine_index = [0 for _ in range(len(component_data))]
pcb_data = pcb_data.sort_values(by="x", ascending=False)
for _, data in pcb_data.iterrows(): for _, data in pcb_data.iterrows():
part = data['part'] part_index = component_data[component_data['part'] == data['part']].index.tolist()[0]
part_index = component_data[component_data['part'] == part].index.tolist()[0]
while True: while True:
machine_index = component_machine_index[part_index] machine_index = component_machine_index[part_index]
if assignment_result[machine_index][part_index] == 0: if assignment_result[machine_index][part_index] == 0:
@ -64,11 +79,60 @@ def optimizer(pcb_data, component_data, assembly_line_optimizer, single_machine_
assignment_result[machine_index][part_index] -= 1 assignment_result[machine_index][part_index] -= 1
partial_pcb_data[machine_index] = pd.concat([partial_pcb_data[machine_index], pd.DataFrame(data).T]) partial_pcb_data[machine_index] = pd.concat([partial_pcb_data[machine_index], pd.DataFrame(data).T])
# === adjust the number of available feeders for single optimization separately ===
for machine_index, data in partial_pcb_data.items(): for machine_index, data in partial_pcb_data.items():
data = data.reset_index(drop=True) data = data.reset_index(drop=True)
if len(data) == 0: if len(data) == 0:
continue continue
part_info = [] # part info list(part index, part points, available feeder-num, upper feeder-num)
for part_index, cp_data in partial_component_data[machine_index].iterrows():
if assignment_result_cpy[machine_index][part_index]:
part_info.append(
[part_index, assignment_result_cpy[machine_index][part_index], 1, cp_data['feeder-limit']])
part_info = sorted(part_info, key=lambda x: x[1], reverse=True)
start_index, end_index = 0, min(max_head_index - 1, len(part_info) - 1)
while start_index < len(part_info):
assign_part_point, assign_part_index = [], []
for idx_ in range(start_index, end_index + 1):
for _ in range(part_info[idx_][2]):
assign_part_point.append(part_info[idx_][1] / part_info[idx_][2])
assign_part_index.append(idx_)
variance = deviation(assign_part_point)
while start_index != end_index:
part_info_index = assign_part_index[np.argmax(assign_part_point)]
if part_info[part_info_index][2] < part_info[part_info_index][3]: # 供料器数目上限的限制
part_info[part_info_index][2] += 1
end_index -= 1
new_assign_part_point, new_assign_part_index = [], []
for idx_ in range(start_index, end_index + 1):
for _ in range(part_info[idx_][2]):
new_assign_part_point.append(part_info[idx_][1] / part_info[idx_][2])
new_assign_part_index.append(idx_)
new_variance = deviation(new_assign_part_point)
if variance < new_variance:
part_info[part_info_index][2] -= 1
end_index += 1
break
variance = new_variance
assign_part_index, assign_part_point = new_assign_part_index, new_assign_part_point
else:
break
start_index = end_index + 1
end_index = min(start_index + max_head_index - 1, len(part_info) - 1)
# update available feeder number
max_avl_feeder = max(part_info, key=lambda x: x[2])[2]
for info in part_info:
partial_component_data[machine_index].loc[info[0]]['feeder-limit'] = math.ceil(info[2] / max_avl_feeder)
placement_time.append(base_optimizer(machine_index + 1, data, partial_component_data[machine_index], placement_time.append(base_optimizer(machine_index + 1, data, partial_component_data[machine_index],
feeder_data=pd.DataFrame(columns=['slot', 'part', 'arg']), feeder_data=pd.DataFrame(columns=['slot', 'part', 'arg']),
method=single_machine_optimizer, hinter=True)) method=single_machine_optimizer, hinter=True))
@ -86,13 +150,15 @@ def optimizer(pcb_data, component_data, assembly_line_optimizer, single_machine_
# todo: 不同类型元件的组装时间差异 # todo: 不同类型元件的组装时间差异
def base_optimizer(machine_index, pcb_data, component_data, feeder_data=None, method='', hinter=False): def base_optimizer(machine_index, pcb_data, component_data, feeder_data=None, method='', hinter=False):
if method == 'cell_division': # 基于元胞分裂的遗传算法 if method == 'cell_division': # 基于元胞分裂的遗传算法
component_result, cycle_result, feeder_slot_result = optimizer_celldivision(pcb_data, component_data, False) component_result, cycle_result, feeder_slot_result = optimizer_celldivision(pcb_data, component_data,
hinter=False)
placement_result, head_sequence = greedy_placement_route_generation(component_data, pcb_data, component_result, placement_result, head_sequence = greedy_placement_route_generation(component_data, pcb_data, component_result,
cycle_result, feeder_slot_result) cycle_result, feeder_slot_result)
elif method == 'feeder_priority': # 基于基座扫描的供料器优先算法 elif method == 'feeder_scan': # 基于基座扫描的供料器优先算法
# 第1步分配供料器位置 # 第1步分配供料器位置
nozzle_pattern = feeder_allocate(component_data, pcb_data, feeder_data, False) nozzle_pattern = feeder_allocate(component_data, pcb_data, feeder_data, figure=False)
# 第2步扫描供料器基座确定元件拾取的先后顺序 # 第2步扫描供料器基座确定元件拾取的先后顺序
component_result, cycle_result, feeder_slot_result = feeder_base_scan(component_data, pcb_data, feeder_data, component_result, cycle_result, feeder_slot_result = feeder_base_scan(component_data, pcb_data, feeder_data,
nozzle_pattern) nozzle_pattern)
@ -105,25 +171,26 @@ def base_optimizer(machine_index, pcb_data, component_data, feeder_data=None, me
elif method == 'hybrid_genetic': # 基于拾取组的混合遗传算法 elif method == 'hybrid_genetic': # 基于拾取组的混合遗传算法
component_result, cycle_result, feeder_slot_result, placement_result, head_sequence = optimizer_hybrid_genetic( component_result, cycle_result, feeder_slot_result, placement_result, head_sequence = optimizer_hybrid_genetic(
pcb_data, component_data, False) pcb_data, component_data, hinter=False)
elif method == 'aggregation': # 基于batch-level的整数规划 + 启发式算法 elif method == 'aggregation': # 基于batch-level的整数规划 + 启发式算法
component_result, cycle_result, feeder_slot_result, placement_result, head_sequence = optimizer_aggregation( component_result, cycle_result, feeder_slot_result, placement_result, head_sequence = optimizer_aggregation(
component_data, pcb_data) component_data, pcb_data)
elif method == 'scan_based': elif method == 'genetic_scanning':
component_result, cycle_result, feeder_slot_result, placement_result, head_sequence = optimizer_scanbased( component_result, cycle_result, feeder_slot_result, placement_result, head_sequence = optimizer_genetic_scanning(
component_data, pcb_data, False) component_data, pcb_data, hinter=False)
else: else:
raise 'method is not existed' raise 'method is not existed'
if hinter: if hinter:
optimization_assign_result(component_data, pcb_data, component_result, cycle_result, feeder_slot_result, optimization_assign_result(component_data, pcb_data, component_result, cycle_result, feeder_slot_result,
nozzle_hinter=False, component_hinter=False, feeder_hinter=False) nozzle_hinter=True, component_hinter=False, feeder_hinter=False)
print('----- Placement machine ' + str(machine_index) + ' ----- ') print('----- Placement machine ' + str(machine_index) + ' ----- ')
print('-Cycle counter: {}'.format(sum(cycle_result))) print('-Cycle counter: {}'.format(sum(cycle_result)))
total_nozzle_change_counter, total_pick_counter = 0, 0 total_nozzle_change_counter, total_pick_counter = 0, 0
total_pick_movement = 0
assigned_nozzle = ['' if idx == -1 else component_data.loc[idx]['nz'] for idx in component_result[0]] assigned_nozzle = ['' if idx == -1 else component_data.loc[idx]['nz'] for idx in component_result[0]]
for cycle in range(len(cycle_result)): for cycle in range(len(cycle_result)):
@ -141,25 +208,31 @@ def base_optimizer(machine_index, pcb_data, component_data, feeder_data=None, me
pick_slot.add(feeder_slot_result[cycle][head] - head * interval_ratio) pick_slot.add(feeder_slot_result[cycle][head] - head * interval_ratio)
total_pick_counter += len(pick_slot) * cycle_result[cycle] total_pick_counter += len(pick_slot) * cycle_result[cycle]
pick_slot = list(pick_slot)
pick_slot.sort()
for idx in range(len(pick_slot) - 1):
total_pick_movement += abs(pick_slot[idx+1] - pick_slot[idx])
print('-Nozzle change counter: {}'.format(total_nozzle_change_counter)) print('-Nozzle change counter: {}'.format(total_nozzle_change_counter))
print('-Pick operation counter: {}'.format(total_pick_counter)) print('-Pick operation counter: {}'.format(total_pick_counter))
print('-Pick movement: {}'.format(total_pick_movement))
print('------------------------------ ') print('------------------------------ ')
# 估算贴装用时 # 估算贴装用时
return placement_time_estimate(component_data, pcb_data, component_result, cycle_result, feeder_slot_result, return placement_time_estimate(component_data, pcb_data, component_result, cycle_result, feeder_slot_result,
placement_result, head_sequence, False) placement_result, head_sequence, hinter=False)
@timer_wrapper
def main(): def main():
# warnings.simplefilter('ignore') # warnings.simplefilter('ignore')
# 参数解析 # 参数解析
parser = argparse.ArgumentParser(description='assembly line optimizer implementation') parser = argparse.ArgumentParser(description='assembly line optimizer implementation')
parser.add_argument('--filename', default='PCB1 - FL19-30W.txt', type=str, help='load pcb data') parser.add_argument('--filename', default='PCB.txt', type=str, help='load pcb data')
parser.add_argument('--auto_register', default=1, type=int, help='register the component according the pcb data') parser.add_argument('--auto_register', default=1, type=int, help='register the component according the pcb data')
parser.add_argument('--base_optimizer', default='feeder_priority', type=str, parser.add_argument('--base_optimizer', default='feeder_scan', type=str, help='base optimizer for single machine')
help='base optimizer for single machine') parser.add_argument('--assembly_optimizer', default='heuristic', type=str, help='optimizer for PCB Assembly Line')
parser.add_argument('--assembly_optimizer', default='genetic', type=str, help='optimizer for PCB Assembly Line') parser.add_argument('--feeder_limit', default=1, type=int,
parser.add_argument('--feeder_limit', default=2, type=int,
help='the upper feeder limit for each type of component') help='the upper feeder limit for each type of component')
params = parser.parse_args() params = parser.parse_args()

View File

@ -236,7 +236,10 @@ def cal_individual_val(component_points, component_nozzle, individual):
for idx in range(len(heads_placement) // max_head_index): for idx in range(len(heads_placement) // max_head_index):
wl += heads_placement[idx][1] wl += heads_placement[idx][1]
objective_val.append(T_pp * machine_points + T_tr * wl + T_nc * ul + T_pl * pl) objective_val.append(T_pp * machine_points + T_tr * wl + T_nc * ul + T_pl * pl)
<<<<<<< HEAD
=======
>>>>>>> 87ddb057cadf152d7af793aa7b8da439dedbe361
return objective_val, machine_component_points return objective_val, machine_component_points
@ -246,7 +249,7 @@ def assemblyline_optimizer_genetic(pcb_data, component_data):
# population size: 200 # population size: 200
# the number of generation: 500 # the number of generation: 500
crossover_rate, mutation_rate = 0.8, 0.1 crossover_rate, mutation_rate = 0.8, 0.1
population_size, n_generations = 200, 500 population_size, n_generations = 500, 500
# the number of placement points, the number of available feeders, and nozzle type of component respectively # the number of placement points, the number of available feeders, and nozzle type of component respectively
component_points, component_feeders, component_nozzle = defaultdict(int), defaultdict(int), defaultdict(str) component_points, component_feeders, component_nozzle = defaultdict(int), defaultdict(int), defaultdict(str)
@ -275,8 +278,7 @@ def assemblyline_optimizer_genetic(pcb_data, component_data):
pop_val.append(max(val)) pop_val.append(max(val))
best_popval.append(min(pop_val)) best_popval.append(min(pop_val))
select_index = get_top_k_value(pop_val, population_size - len(new_population), reverse=False)
select_index = get_top_k_value(pop_val, population_size - len(new_pop_val), reverse=False)
population = [population[idx] for idx in select_index] population = [population[idx] for idx in select_index]
pop_val = [pop_val[idx] for idx in select_index] pop_val = [pop_val[idx] for idx in select_index]

View File

@ -1,16 +1,146 @@
import math
import numpy as np
from base_optimizer.optimizer_common import * from base_optimizer.optimizer_common import *
# TODO: 需要考虑贴装点分布位置的限制 # TODO: consider with the PCB placement topology
def assembly_time_estimator(pcb_data, component_data, assignment): def assembly_time_estimator(component_points, component_feeders, component_nozzle, assignment_points):
return 0 # todo: how to deal with nozzle change
n_cycle, n_nz_change, n_gang_pick = 0, 0, 0
nozzle_heads, nozzle_points = defaultdict(int), defaultdict(int)
for idx, points in enumerate(assignment_points):
if points == 0:
continue
nozzle_points[component_nozzle[idx]] += points
nozzle_heads[component_nozzle[idx]] = 1
while sum(nozzle_heads.values()) != max_head_index:
max_cycle_nozzle = None
for nozzle, head_num in nozzle_heads.items():
if max_cycle_nozzle is None or nozzle_points[nozzle] / head_num > nozzle_points[max_cycle_nozzle] / \
nozzle_heads[max_cycle_nozzle]:
max_cycle_nozzle = nozzle
assert max_cycle_nozzle is not None
nozzle_heads[max_cycle_nozzle] += 1
n_cycle = max(map(lambda x: math.ceil(nozzle_points[x[0]] / x[1]), nozzle_heads.items()))
# calculate the number of simultaneous pickup
head_index, nozzle_cycle = 0, [[] for _ in range(max_head_index)]
for nozzle, heads in nozzle_heads.items():
head_index_cpy, points = head_index, nozzle_points[nozzle]
for _ in range(heads):
nozzle_cycle[head_index].append([nozzle, points // heads])
head_index += 1
points %= heads
while points:
nozzle_cycle[head_index_cpy][1] += 1
points -= 1
head_index_cpy += 1
# nozzle_cycle_index = [0 for _ in range(max_head_index)]
return n_cycle, n_nz_change, n_gang_pick
def assemblyline_optimizer_heuristic(pcb_data, component_data): def assemblyline_optimizer_heuristic(pcb_data, component_data):
assignment_result = [] # the number of placement points, the number of available feeders, and nozzle type of component respectively
component_number = len(component_data)
component_points = [0 for _ in range(component_number)]
component_feeders = [0 for _ in range(component_number)]
component_nozzle = [0 for _ in range(component_number)]
component_part = [0 for _ in range(component_number)]
# for machine_index in range(max_machine_index): nozzle_points = defaultdict(int) # the number of placements of nozzle
# assembly_time_estimator(pcb_data, component_data, assignment_result[machine_index])
for _, data in pcb_data.iterrows():
part_index = component_data[component_data['part'] == data['part']].index.tolist()[0]
nozzle = component_data.loc[part_index]['nz']
component_points[part_index] += 1
component_feeders[part_index] = component_data.loc[part_index]['feeder-limit']
# component_feeders[part_index] = math.ceil(component_data.loc[part_index]['feeder-limit'] / max_feeder_limit)
component_nozzle[part_index] = nozzle
component_part[part_index] = data['part']
nozzle_points[nozzle] += 1
# first step: generate the initial solution with equalized workload
assignment_result = [[0 for _ in range(len(component_points))] for _ in range(max_machine_index)]
assignment_points = [0 for _ in range(max_machine_index)]
weighted_points = list(
map(lambda x: x[1] + 1e-5 * nozzle_points[component_nozzle[x[0]]], enumerate(component_points)))
for part_index in np.argsort(weighted_points):
if (total_points := component_points[part_index]) == 0: # total placements for each component type
continue
machine_set = []
# define the machine that assigning placement points (considering the feeder limitation)
for machine_index in np.argsort(assignment_points):
if len(machine_set) >= component_points[part_index] or len(machine_set) >= component_feeders[part_index]:
break
machine_set.append(machine_index)
# Allocation of mounting points to available machines according to the principle of equality
while total_points:
assign_machine = list(filter(lambda x: assignment_points[x] == min(assignment_points), machine_set))
if len(assign_machine) == len(machine_set):
# averagely assign point to all available machines
points = total_points // len(assign_machine)
for machine_index in machine_set:
assignment_points[machine_index] += points
assignment_result[machine_index][part_index] += points
total_points -= points * len(assign_machine)
for machine_index in machine_set:
if total_points == 0:
break
assignment_points[machine_index] += 1
assignment_result[machine_index][part_index] += 1
total_points -= 1
else:
# assigning placements to make up for the gap between the least and the second least
second_least_machine, second_least_machine_points = -1, max(assignment_points) + 1
for idx in machine_set:
if assignment_points[idx] < second_least_machine_points and assignment_points[idx] != min(
assignment_points):
second_least_machine_points = assignment_points[idx]
second_least_machine = idx
assert second_least_machine != -1
if len(assign_machine) * (second_least_machine_points - min(assignment_points)) < total_points:
min_points = min(assignment_points)
total_points -= len(assign_machine) * (second_least_machine_points - min_points)
for machine_index in assign_machine:
assignment_points[machine_index] += (second_least_machine_points - min_points)
assignment_result[machine_index][part_index] += (
second_least_machine_points - min_points)
else:
points = total_points // len(assign_machine)
for machine_index in assign_machine:
assignment_points[machine_index] += points
assignment_result[machine_index][part_index] += points
total_points -= points * len(assign_machine)
for machine_index in assign_machine:
if total_points == 0:
break
assignment_points[machine_index] += 1
assignment_result[machine_index][part_index] += 1
total_points -= 1
# todo: implementation
# second step: estimate the assembly time for each machine
# third step: adjust the assignment results to reduce maximal assembly time among all machines
return assignment_result return assignment_result

11
optimizer_spidermonkey.py Normal file
View File

@ -0,0 +1,11 @@
# implementation of
# <<Hybrid spider monkey optimisation algorithm for multi-level planning and scheduling problems of assembly lines>>
def assemblyline_optimizer_spidermonkey(pcb_data, component_data):
# number of swarms: 10
# maximum number of groups: 5
# number of loops: 100
# food source population: 50
# mutation rate: 0.1
# crossover rate: 0.9
# computation time(s): 200
pass

View File

@ -362,14 +362,24 @@ def optimization_assign_result(component_data, pcb_data, component_result, cycle
nozzle_assign = pd.DataFrame(columns=columns) nozzle_assign = pd.DataFrame(columns=columns)
for cycle, components in enumerate(component_result): for cycle, components in enumerate(component_result):
nozzle_assign.loc[cycle, 'cycle'] = cycle_result[cycle] nozzle_assign_row = len(nozzle_assign)
nozzle_assign.loc[nozzle_assign_row, 'cycle'] = cycle_result[cycle]
for head in range(max_head_index): for head in range(max_head_index):
index = component_result[cycle][head] index = component_result[cycle][head]
if index == -1: if index == -1:
nozzle_assign.loc[cycle, 'H{}'.format(head + 1)] = '' nozzle_assign.loc[nozzle_assign_row, 'H{}'.format(head + 1)] = ''
else: else:
nozzle = component_data.loc[index]['nz'] nozzle = component_data.loc[index]['nz']
nozzle_assign.loc[cycle, 'H{}'.format(head + 1)] = nozzle nozzle_assign.loc[nozzle_assign_row, 'H{}'.format(head + 1)] = nozzle
for head in range(max_head_index):
if nozzle_assign_row == 0 or nozzle_assign.loc[nozzle_assign_row - 1, 'H{}'.format(head + 1)] != \
nozzle_assign.loc[nozzle_assign_row, 'H{}'.format(head + 1)]:
break
else:
nozzle_assign.loc[nozzle_assign_row - 1, 'cycle'] += nozzle_assign.loc[nozzle_assign_row, 'cycle']
nozzle_assign.drop([len(nozzle_assign) - 1], inplace=True)
print(nozzle_assign) print(nozzle_assign)
print('') print('')
@ -449,11 +459,7 @@ def placement_time_estimate(component_data, pcb_data, component_result, cycle_re
warnings.warn(info, UserWarning) warnings.warn(info, UserWarning)
return 0. return 0.
t_pick, t_place = .078, .051 # 贴装/拾取用时 total_pickup_time, total_round_time, total_place_time = .0, .0, 0 # 拾取用时、往返用时、贴装用时
t_nozzle_put, t_nozzle_pick = 0.9, 0.75 # 装卸吸嘴用时
t_fix_camera_check = 0.12 # 固定相机检测时间
total_moving_time = .0 # 总移动用时
total_operation_time = .0 # 操作用时 total_operation_time = .0 # 操作用时
total_nozzle_change_counter = 0 # 总吸嘴更换次数 total_nozzle_change_counter = 0 # 总吸嘴更换次数
total_pick_counter = 0 # 总拾取次数 total_pick_counter = 0 # 总拾取次数
@ -492,8 +498,10 @@ def placement_time_estimate(component_data, pcb_data, component_result, cycle_re
# ANC处进行吸嘴更换 # ANC处进行吸嘴更换
if nozzle_pick_counter + nozzle_put_counter > 0: if nozzle_pick_counter + nozzle_put_counter > 0:
next_pos = anc_marker_pos next_pos = anc_marker_pos
total_moving_time += max(axis_moving_time(cur_pos[0] - next_pos[0], 0), move_time = max(axis_moving_time(cur_pos[0] - next_pos[0], 0),
axis_moving_time(cur_pos[1] - next_pos[1], 1)) axis_moving_time(cur_pos[1] - next_pos[1], 1))
total_round_time += move_time
total_distance += max(abs(cur_pos[0] - next_pos[0]), abs(cur_pos[1] - next_pos[1])) total_distance += max(abs(cur_pos[0] - next_pos[0]), abs(cur_pos[1] - next_pos[1]))
cur_pos = next_pos cur_pos = next_pos
@ -501,15 +509,21 @@ def placement_time_estimate(component_data, pcb_data, component_result, cycle_re
pick_slot = sorted(pick_slot, reverse=True) pick_slot = sorted(pick_slot, reverse=True)
# 拾取路径(自右向左) # 拾取路径(自右向左)
for slot in pick_slot: for idx, slot in enumerate(pick_slot):
if slot < max_slot_index // 2: if slot < max_slot_index // 2:
next_pos = [slotf1_pos[0] + slot_interval * (slot - 1), slotf1_pos[1]] next_pos = [slotf1_pos[0] + slot_interval * (slot - 1), slotf1_pos[1]]
else: else:
next_pos = [slotr1_pos[0] - slot_interval * (max_slot_index - slot - 1), slotr1_pos[1]] next_pos = [slotr1_pos[0] - slot_interval * (max_slot_index - slot - 1), slotr1_pos[1]]
total_operation_time += t_pick total_operation_time += t_pick
total_pick_counter += 1 total_pick_counter += 1
total_moving_time += max(axis_moving_time(cur_pos[0] - next_pos[0], 0),
move_time = max(axis_moving_time(cur_pos[0] - next_pos[0], 0),
axis_moving_time(cur_pos[1] - next_pos[1], 1)) axis_moving_time(cur_pos[1] - next_pos[1], 1))
if idx == 0:
total_round_time += move_time
else:
total_pickup_time += move_time
total_distance += max(abs(cur_pos[0] - next_pos[0]), abs(cur_pos[1] - next_pos[1])) total_distance += max(abs(cur_pos[0] - next_pos[0]), abs(cur_pos[1] - next_pos[1]))
if slot != pick_slot[0]: if slot != pick_slot[0]:
total_pick_distance += max(abs(cur_pos[0] - next_pos[0]), abs(cur_pos[1] - next_pos[1])) total_pick_distance += max(abs(cur_pos[0] - next_pos[0]), abs(cur_pos[1] - next_pos[1]))
@ -522,8 +536,10 @@ def placement_time_estimate(component_data, pcb_data, component_result, cycle_re
camera = component_data.loc[component_result[cycle_set][head]]['camera'] camera = component_data.loc[component_result[cycle_set][head]]['camera']
if camera == '固定相机': if camera == '固定相机':
next_pos = [fix_camera_pos[0] - head * head_interval, fix_camera_pos[1]] next_pos = [fix_camera_pos[0] - head * head_interval, fix_camera_pos[1]]
total_moving_time += max(axis_moving_time(cur_pos[0] - next_pos[0], 0), move_time = max(axis_moving_time(cur_pos[0] - next_pos[0], 0),
axis_moving_time(cur_pos[1] - next_pos[1], 1)) axis_moving_time(cur_pos[1] - next_pos[1], 1))
total_round_time += move_time
total_distance += max(abs(cur_pos[0] - next_pos[0]), abs(cur_pos[1] - next_pos[1])) total_distance += max(abs(cur_pos[0] - next_pos[0]), abs(cur_pos[1] - next_pos[1]))
total_operation_time += t_fix_camera_check total_operation_time += t_fix_camera_check
cur_pos = next_pos cur_pos = next_pos
@ -545,22 +561,26 @@ def placement_time_estimate(component_data, pcb_data, component_result, cycle_re
# 考虑R轴预旋转补偿同轴角度转动带来的额外贴装用时 # 考虑R轴预旋转补偿同轴角度转动带来的额外贴装用时
total_operation_time += head_rotary_time(mount_angle[0]) # 补偿角度转动带来的额外贴装用时 total_operation_time += head_rotary_time(mount_angle[0]) # 补偿角度转动带来的额外贴装用时
total_operation_time += t_nozzle_put * nozzle_put_counter + t_nozzle_pick * nozzle_pick_counter total_operation_time += t_nozzle_put * nozzle_put_counter + t_nozzle_pick * nozzle_pick_counter
for pos in mount_pos: for idx, pos in enumerate(mount_pos):
total_operation_time += t_place total_operation_time += t_place
total_moving_time += max(axis_moving_time(cur_pos[0] - pos[0], 0), move_time = max(axis_moving_time(cur_pos[0] - pos[0], 0), axis_moving_time(cur_pos[1] - pos[1], 1))
axis_moving_time(cur_pos[1] - pos[1], 1)) if idx == 0:
total_round_time += move_time
else:
total_place_time += move_time
total_distance += max(abs(cur_pos[0] - pos[0]), abs(cur_pos[1] - pos[1])) total_distance += max(abs(cur_pos[0] - pos[0]), abs(cur_pos[1] - pos[1]))
cur_pos = pos cur_pos = pos
total_nozzle_change_counter += nozzle_put_counter + nozzle_pick_counter total_nozzle_change_counter += nozzle_put_counter + nozzle_pick_counter
total_time = total_moving_time + total_operation_time total_time = total_pickup_time + total_round_time + total_place_time + total_operation_time
minutes, seconds = int(total_time // 60), int(total_time) % 60 minutes, seconds = int(total_time // 60), int(total_time) % 60
millisecond = int((total_time - minutes * 60 - seconds) * 60) millisecond = int((total_time - minutes * 60 - seconds) * 60)
if hinter: if hinter:
optimization_assign_result(component_data, pcb_data, component_result, cycle_result, feeder_slot_result, optimization_assign_result(component_data, pcb_data, component_result, cycle_result, feeder_slot_result,
nozzle_hinter=True, component_hinter=True, feeder_hinter=True) nozzle_hinter=False, component_hinter=False, feeder_hinter=False)
print('-Cycle counter: {}'.format(sum(cycle_result))) print('-Cycle counter: {}'.format(sum(cycle_result)))
print('-Nozzle change counter: {}'.format(total_nozzle_change_counter // 2)) print('-Nozzle change counter: {}'.format(total_nozzle_change_counter // 2))
@ -570,7 +590,9 @@ def placement_time_estimate(component_data, pcb_data, component_result, cycle_re
print('-Expected picking tour length: {} mm'.format(total_pick_distance)) print('-Expected picking tour length: {} mm'.format(total_pick_distance))
print('-Expected total tour length: {} mm'.format(total_distance)) print('-Expected total tour length: {} mm'.format(total_distance))
print('-Expected total moving time: {} s'.format(total_moving_time)) print('-Expected total moving time: {} s with pick: {}, round: {}, place = {}'.format(
total_pickup_time + total_round_time + total_place_time, total_pickup_time, total_round_time,
total_place_time))
print('-Expected total operation time: {} s'.format(total_operation_time)) print('-Expected total operation time: {} s'.format(total_operation_time))
if minutes > 0: if minutes > 0: