启发式产线分配
This commit is contained in:
@ -1,15 +1,18 @@
|
|||||||
from base_optimizer.optimizer_common import *
|
from base_optimizer.optimizer_common import *
|
||||||
|
|
||||||
from ortools.sat.python import cp_model
|
from gurobipy import *
|
||||||
from collections import defaultdict
|
from collections import defaultdict
|
||||||
|
|
||||||
|
|
||||||
|
def list_range(start, end=None):
|
||||||
|
return list(range(start)) if end is None else list(range(start, end))
|
||||||
|
|
||||||
|
|
||||||
@timer_wrapper
|
@timer_wrapper
|
||||||
def optimizer_aggregation(component_data, pcb_data):
|
def optimizer_aggregation(component_data, pcb_data):
|
||||||
# === phase 0: data preparation ===
|
# === phase 0: data preparation ===
|
||||||
M = 1000 # a sufficient large number
|
M = 1000 # a sufficient large number
|
||||||
a, b = 1, 6 # coefficient
|
a, b = 1, 6 # coefficient
|
||||||
K, I, J, L = max_head_index, 0, 0, 0 # the maximum number of heads, component types, nozzle types and batch level
|
|
||||||
|
|
||||||
component_list, nozzle_list = defaultdict(int), defaultdict(int)
|
component_list, nozzle_list = defaultdict(int), defaultdict(int)
|
||||||
cpidx_2_part, nzidx_2_nozzle = {}, {}
|
cpidx_2_part, nzidx_2_nozzle = {}, {}
|
||||||
@ -26,10 +29,11 @@ def optimizer_aggregation(component_data, pcb_data):
|
|||||||
nzidx_2_nozzle[len(nzidx_2_nozzle)] = nozzle
|
nzidx_2_nozzle[len(nzidx_2_nozzle)] = nozzle
|
||||||
nozzle_list[nozzle] += 1
|
nozzle_list[nozzle] += 1
|
||||||
|
|
||||||
I, J = len(component_list.keys()), len(nozzle_list.keys())
|
I, J = len(component_list.keys()), len(nozzle_list.keys()) # the maximum number of component types and nozzle types
|
||||||
L = I + 1
|
L = I + 1 # the maximum number of batch level
|
||||||
HC = [[M for _ in range(J)] for _ in range(I)] # the handing class when component i is handled by nozzle type j
|
K = max_head_index # the maximum number of heads
|
||||||
# represent the nozzle-component compatibility
|
HC = [[M for _ in range(J)] for _ in range(I)] # represent the nozzle-component compatibility
|
||||||
|
|
||||||
for i in range(I):
|
for i in range(I):
|
||||||
for _, item in enumerate(cpidx_2_part.items()):
|
for _, item in enumerate(cpidx_2_part.items()):
|
||||||
index, part = item
|
index, part = item
|
||||||
@ -41,105 +45,71 @@ def optimizer_aggregation(component_data, pcb_data):
|
|||||||
HC[index][j] = 0
|
HC[index][j] = 0
|
||||||
|
|
||||||
# === phase 1: mathematical model solver ===
|
# === phase 1: mathematical model solver ===
|
||||||
model = cp_model.CpModel()
|
mdl = Model('SMT')
|
||||||
solver = cp_model.CpSolver()
|
mdl.setParam('OutputFlag', 0)
|
||||||
|
|
||||||
# === Decision Variables ===
|
# === Decision Variables ===
|
||||||
# the number of components of type i that are placed by nozzle type j on placement head k
|
# the number of components of type i that are placed by nozzle type j on placement head k
|
||||||
X = {}
|
X = mdl.addVars(list_range(I), list_range(J), list_range(K), vtype=GRB.INTEGER, ub=max(component_list.values()))
|
||||||
for i in range(I):
|
|
||||||
for j in range(J):
|
|
||||||
for k in range(K):
|
|
||||||
X[i, j, k] = model.NewIntVar(0, component_list[cpidx_2_part[i]], 'X_{}_{}_{}'.format(i, j, k))
|
|
||||||
|
|
||||||
# the total number of nozzle changes on placement head k
|
# the total number of nozzle changes on placement head k
|
||||||
N = {}
|
N = mdl.addVars(list_range(K), vtype=GRB.INTEGER)
|
||||||
for k in range(K):
|
|
||||||
N[k] = model.NewIntVar(0, J, 'N_{}'.format(k))
|
|
||||||
|
|
||||||
# the largest workload of all placement heads
|
# the largest workload of all placement heads
|
||||||
WL = model.NewIntVar(0, len(pcb_data), 'WL')
|
WL = mdl.addVar(vtype=GRB.INTEGER, lb=0, ub=len(pcb_data))
|
||||||
|
|
||||||
# whether batch Xijk is placed on level l
|
# whether batch Xijk is placed on level l
|
||||||
Z = {}
|
Z = mdl.addVars(list_range(I), list_range(J), list_range(L), list_range(K), vtype=GRB.BINARY)
|
||||||
for i in range(I):
|
|
||||||
for j in range(J):
|
|
||||||
for l in range(L):
|
|
||||||
for k in range(K):
|
|
||||||
Z[i, j, l, k] = model.NewBoolVar('Z_{}_{}_{}_{}'.format(i, j, l, k))
|
|
||||||
|
|
||||||
# Dlk := 2 if a change of nozzles in the level l + 1 on placement head k
|
# Dlk := 2 if a change of nozzles in the level l + 1 on placement head k
|
||||||
# Dlk := 1 if there are no batches placed on levels higher than l
|
# Dlk := 1 if there are no batches placed on levels higher than l
|
||||||
D = {}
|
# Dlk := 0 otherwise
|
||||||
for l in range(L):
|
D = mdl.addVars(list_range(L), list_range(K), vtype=GRB.BINARY, ub=2)
|
||||||
for k in range(K):
|
D_plus = mdl.addVars(list_range(L), list_range(J), list_range(K), vtype=GRB.INTEGER)
|
||||||
D[l, k] = model.NewIntVar(0, 2, 'D_{}_{}'.format(l, k))
|
D_minus = mdl.addVars(list_range(L), list_range(J), list_range(K), vtype=GRB.INTEGER)
|
||||||
|
|
||||||
D_abs = {}
|
|
||||||
for l in range(L):
|
|
||||||
for j in range(J):
|
|
||||||
for k in range(K):
|
|
||||||
D_abs[l, j, k] = model.NewIntVar(0, M, 'D_abs_{}_{}_{}'.format(l, j, k))
|
|
||||||
|
|
||||||
# == Objective function ===
|
# == Objective function ===
|
||||||
model.Minimize(a * WL + b * sum(N[k] for k in range(K)))
|
mdl.modelSense = GRB.MINIMIZE
|
||||||
|
mdl.setObjective(a * WL + b * quicksum(N[k] for k in range(K)))
|
||||||
|
|
||||||
# === Constraint ===
|
# === Constraint ===
|
||||||
for i in range(I):
|
mdl.addConstrs(
|
||||||
model.Add(sum(X[i, j, k] for j in range(J) for k in range(K)) == component_list[cpidx_2_part[i]])
|
quicksum(X[i, j, k] for j in range(J) for k in range(K)) == component_list[cpidx_2_part[i]] for i in range(I))
|
||||||
|
|
||||||
for k in range(K):
|
mdl.addConstrs(quicksum(X[i, j, k] for i in range(I) for j in range(J)) <= WL for k in range(K))
|
||||||
model.Add(sum(X[i, j, k] for i in range(I) for j in range(J)) <= WL)
|
|
||||||
|
|
||||||
for i in range(I):
|
mdl.addConstrs(
|
||||||
for j in range(J):
|
X[i, j, k] <= M * quicksum(Z[i, j, l, k] for l in range(L)) for i in range(I) for j in range(J) for k in
|
||||||
for k in range(K):
|
range(K))
|
||||||
model.Add(X[i, j, k] <= M * sum(Z[i, j, l, k] for l in range(L)))
|
|
||||||
|
|
||||||
for i in range(I):
|
mdl.addConstrs(quicksum(Z[i, j, l, k] for l in range(L)) <= 1 for i in range(I) for j in range(J) for k in range(K))
|
||||||
for j in range(J):
|
mdl.addConstrs(
|
||||||
for k in range(K):
|
quicksum(Z[i, j, l, k] for l in range(L)) <= X[i, j, k] for i in range(I) for j in range(J) for k in range(K))
|
||||||
model.Add(sum(Z[i, j, l, k] for l in range(L)) <= 1)
|
|
||||||
|
|
||||||
for i in range(I):
|
mdl.addConstrs(quicksum(Z[i, j, l, k] for j in range(J) for i in range(I)) >= quicksum(
|
||||||
for j in range(J):
|
Z[i, j, l + 1, k] for j in range(J) for i in range(I)) for k in range(K) for l in range(L - 1))
|
||||||
for k in range(K):
|
|
||||||
model.Add(sum(Z[i, j, l, k] for l in range(L)) <= X[i, j, k])
|
|
||||||
|
|
||||||
for k in range(K):
|
mdl.addConstrs(quicksum(Z[i, j, l, k] for i in range(I) for j in range(J)) <= 1 for k in range(K) for l in range(L))
|
||||||
for l in range(L - 1):
|
mdl.addConstrs(D_plus[l, j, k] - D_minus[l, j, k] == quicksum(Z[i, j, l, k] for i in range(I)) - quicksum(
|
||||||
model.Add(sum(Z[i, j, l, k] for j in range(J) for i in range(I)) >= sum(
|
Z[i, j, l + 1, k] for i in range(I)) for l in range(L - 1) for j in range(J) for k in range(K))
|
||||||
Z[i, j, l + 1, k] for j in range(J) for i in range(I)))
|
|
||||||
|
|
||||||
for l in range(I):
|
mdl.addConstrs(
|
||||||
for k in range(K):
|
D[l, k] == quicksum((D_plus[l, j, k] + D_minus[l, j, k]) for j in range(J)) for k in range(K) for l in
|
||||||
model.Add(sum(Z[i, j, l, k] for i in range(I) for j in range(J)) <= 1)
|
range(L))
|
||||||
|
|
||||||
for l in range(L - 1):
|
mdl.addConstrs(2 * N[k] == quicksum(D[l, k] for l in range(L)) - 1 for k in range(K))
|
||||||
for j in range(J):
|
mdl.addConstrs(
|
||||||
for k in range(K):
|
0 >= quicksum(HC[i][j] * Z[i, j, l, k] for i in range(I) for j in range(J)) for l in range(L) for k in range(K))
|
||||||
model.AddAbsEquality(D_abs[l, j, k],
|
|
||||||
sum(Z[i, j, l, k] for i in range(I)) - sum(Z[i, j, l + 1, k] for i in range(I)))
|
|
||||||
|
|
||||||
for k in range(K):
|
|
||||||
for l in range(L):
|
|
||||||
model.Add(D[l, k] == sum(D_abs[l, j, k] for j in range(J)))
|
|
||||||
|
|
||||||
for k in range(K):
|
|
||||||
model.Add(N[k] == sum(D[l, k] for l in range(L)) - 1)
|
|
||||||
|
|
||||||
for l in range(L):
|
|
||||||
for k in range(K):
|
|
||||||
model.Add(0 >= sum(HC[i][j] * Z[i, j, l, k] for i in range(I) for j in range(J)))
|
|
||||||
|
|
||||||
# === Main Process ===
|
# === Main Process ===
|
||||||
component_result, cycle_result = [], []
|
component_result, cycle_result = [], []
|
||||||
feeder_slot_result, placement_result, head_sequence = [], [], []
|
feeder_slot_result, placement_result, head_sequence = [], [], []
|
||||||
solver.parameters.max_time_in_seconds = 20.0
|
mdl.setParam("TimeLimit", 100)
|
||||||
|
|
||||||
status = solver.Solve(model)
|
mdl.optimize()
|
||||||
if status == cp_model.OPTIMAL or status == cp_model.FEASIBLE:
|
|
||||||
print('total cost = {}'.format(solver.ObjectiveValue()))
|
if mdl.Status == GRB.OPTIMAL:
|
||||||
|
print('total cost = {}'.format(mdl.objval))
|
||||||
|
|
||||||
# convert cp model solution to standard output
|
# convert cp model solution to standard output
|
||||||
model_cycle_result, model_component_result = [], []
|
model_cycle_result, model_component_result = [], []
|
||||||
@ -149,9 +119,9 @@ def optimizer_aggregation(component_data, pcb_data):
|
|||||||
for k in range(K):
|
for k in range(K):
|
||||||
for i in range(I):
|
for i in range(I):
|
||||||
for j in range(J):
|
for j in range(J):
|
||||||
if solver.BooleanValue(Z[i, j, l, k]) != 0:
|
if abs(Z[i, j, l, k].x - 1) <= 1e-3:
|
||||||
model_component_result[-1][k] = cpidx_2_part[i]
|
model_component_result[-1][k] = cpidx_2_part[i]
|
||||||
model_cycle_result[-1][k] = solver.Value(X[i, j, k])
|
model_cycle_result[-1][k] = round(X[i, j, k].x)
|
||||||
|
|
||||||
# remove redundant term
|
# remove redundant term
|
||||||
if sum(model_cycle_result[-1]) == 0:
|
if sum(model_cycle_result[-1]) == 0:
|
||||||
@ -209,7 +179,6 @@ def optimizer_aggregation(component_data, pcb_data):
|
|||||||
if component_result[cycle_idx][head] == -1:
|
if component_result[cycle_idx][head] == -1:
|
||||||
continue
|
continue
|
||||||
index_ = component_result[cycle_idx][head]
|
index_ = component_result[cycle_idx][head]
|
||||||
|
|
||||||
placement_result[-1][head] = mount_point_pos[index_][-1][2]
|
placement_result[-1][head] = mount_point_pos[index_][-1][2]
|
||||||
mount_point_pos[index_].pop()
|
mount_point_pos[index_].pop()
|
||||||
head_sequence.append(dynamic_programming_cycle_path(pcb_data, placement_result[-1], feeder_slot_result[cycle_idx]))
|
head_sequence.append(dynamic_programming_cycle_path(pcb_data, placement_result[-1], feeder_slot_result[cycle_idx]))
|
||||||
|
@ -49,6 +49,12 @@ feeder_width = {'SM8': (7.25, 7.25), 'SM12': (7.00, 20.00), 'SM16': (7.00, 22.00
|
|||||||
# 可用吸嘴数量限制
|
# 可用吸嘴数量限制
|
||||||
nozzle_limit = {'CN065': 6, 'CN040': 6, 'CN220': 6, 'CN400': 6, 'CN140': 6}
|
nozzle_limit = {'CN065': 6, 'CN040': 6, 'CN220': 6, 'CN400': 6, 'CN140': 6}
|
||||||
|
|
||||||
|
# 时间参数
|
||||||
|
t_cycle = 0.3
|
||||||
|
t_pick, t_place = .078, .051 # 贴装/拾取用时
|
||||||
|
t_nozzle_put, t_nozzle_pick = 0.9, 0.75 # 装卸吸嘴用时
|
||||||
|
t_nozzle_change = t_nozzle_put + t_nozzle_pick
|
||||||
|
t_fix_camera_check = 0.12 # 固定相机检测时间
|
||||||
|
|
||||||
def axis_moving_time(distance, axis=0):
|
def axis_moving_time(distance, axis=0):
|
||||||
distance = abs(distance) * 1e-3
|
distance = abs(distance) * 1e-3
|
||||||
@ -880,7 +886,7 @@ def constraint_swap_mutation(component_points, individual):
|
|||||||
offspring = individual.copy()
|
offspring = individual.copy()
|
||||||
|
|
||||||
idx, component_index = 0, random.randint(0, len(component_points) - 1)
|
idx, component_index = 0, random.randint(0, len(component_points) - 1)
|
||||||
for points in component_points.values():
|
for _, points in component_points:
|
||||||
if component_index == 0:
|
if component_index == 0:
|
||||||
while True:
|
while True:
|
||||||
index1, index2 = random.sample(range(points + max_machine_index - 2), 2)
|
index1, index2 = random.sample(range(points + max_machine_index - 2), 2)
|
||||||
|
@ -2,7 +2,7 @@ from base_optimizer.optimizer_common import *
|
|||||||
|
|
||||||
|
|
||||||
@timer_wrapper
|
@timer_wrapper
|
||||||
def feeder_allocate(component_data, pcb_data, feeder_data, nozzle_pattern, figure=False):
|
def feeder_allocate(component_data, pcb_data, feeder_data, figure=False):
|
||||||
|
|
||||||
feeder_points, feeder_division_points = defaultdict(int), defaultdict(int) # 供料器贴装点数
|
feeder_points, feeder_division_points = defaultdict(int), defaultdict(int) # 供料器贴装点数
|
||||||
mount_center_pos = defaultdict(int)
|
mount_center_pos = defaultdict(int)
|
||||||
|
@ -234,8 +234,8 @@ def cal_individual_val(component_nozzle, component_point_pos, designated_nozzle,
|
|||||||
return V[-1], pickup_result, pickup_cycle_result
|
return V[-1], pickup_result, pickup_cycle_result
|
||||||
|
|
||||||
|
|
||||||
def convert_individual_2_result(component_data, component_point_pos, designated_nozzle, pickup_group, pickup_group_cycle,
|
def convert_individual_2_result(component_data, component_point_pos, designated_nozzle, pickup_group,
|
||||||
pair_group, feeder_lane, individual):
|
pickup_group_cycle, pair_group, feeder_lane, individual):
|
||||||
component_result, cycle_result, feeder_slot_result = [], [], []
|
component_result, cycle_result, feeder_slot_result = [], [], []
|
||||||
placement_result, head_sequence_result = [], []
|
placement_result, head_sequence_result = [], []
|
||||||
|
|
||||||
@ -418,19 +418,19 @@ def optimizer_hybrid_genetic(pcb_data, component_data, hinter=True):
|
|||||||
pick_part = pickup[pickup_index]
|
pick_part = pickup[pickup_index]
|
||||||
|
|
||||||
# 检查槽位占用情况
|
# 检查槽位占用情况
|
||||||
if feeder_lane[slot] is not None and pick_part is not None:
|
if feeder_lane[slot] and pick_part:
|
||||||
assign_available = False
|
assign_available = False
|
||||||
break
|
break
|
||||||
|
|
||||||
# 检查机械限位冲突
|
# 检查机械限位冲突
|
||||||
if pick_part is not None and (slot - CT_Head[pick_part][0] * interval_ratio <= 0 or
|
if pick_part and (slot - CT_Head[pick_part][0] * interval_ratio <= 0 or slot + (
|
||||||
slot + (max_head_index - CT_Head[pick_part][1] - 1) * interval_ratio > max_slot_index // 2):
|
max_head_index - CT_Head[pick_part][1] - 1) * interval_ratio > max_slot_index // 2):
|
||||||
assign_available = False
|
assign_available = False
|
||||||
break
|
break
|
||||||
|
|
||||||
if assign_available:
|
if assign_available:
|
||||||
for idx, component in enumerate(pickup):
|
for idx, component in enumerate(pickup):
|
||||||
if component is not None:
|
if component:
|
||||||
feeder_lane[assign_slot + idx * interval_ratio] = component
|
feeder_lane[assign_slot + idx * interval_ratio] = component
|
||||||
CT_Group_slot[CTIdx] = assign_slot
|
CT_Group_slot[CTIdx] = assign_slot
|
||||||
break
|
break
|
||||||
@ -509,32 +509,31 @@ def optimizer_hybrid_genetic(pcb_data, component_data, hinter=True):
|
|||||||
|
|
||||||
with tqdm(total=n_generations) as pbar:
|
with tqdm(total=n_generations) as pbar:
|
||||||
pbar.set_description('hybrid genetic process')
|
pbar.set_description('hybrid genetic process')
|
||||||
|
# calculate fitness value
|
||||||
|
pop_val = []
|
||||||
|
for pop_idx, individual in enumerate(population):
|
||||||
|
val, _, _ = cal_individual_val(component_nozzle, component_point_pos, designated_nozzle, pickup_group,
|
||||||
|
pickup_group_cycle, pair_group, feeder_part_arrange, individual)
|
||||||
|
pop_val.append(val) # val is related to assembly time
|
||||||
|
|
||||||
for _ in range(n_generations):
|
for _ in range(n_generations):
|
||||||
# calculate fitness value
|
# idx = np.argmin(pop_val)
|
||||||
pop_val = []
|
# if len(best_pop_val) == 0 or pop_val[idx] < best_pop_val[-1]:
|
||||||
for pop_idx, individual in enumerate(population):
|
# best_individual = copy.deepcopy(population[idx])
|
||||||
val, _, _ = cal_individual_val(component_nozzle, component_point_pos, designated_nozzle, pickup_group,
|
# best_pop_val.append(pop_val[idx])
|
||||||
pickup_group_cycle, pair_group, feeder_part_arrange, individual)
|
|
||||||
pop_val.append(val)
|
|
||||||
|
|
||||||
idx = np.argmin(pop_val)
|
|
||||||
if len(best_pop_val) == 0 or pop_val[idx] < best_pop_val[-1]:
|
|
||||||
best_individual = copy.deepcopy(population[idx])
|
|
||||||
best_pop_val.append(pop_val[idx])
|
|
||||||
|
|
||||||
# min-max convert
|
# min-max convert
|
||||||
max_val = 1.5 * max(pop_val)
|
max_val = 1.5 * max(pop_val)
|
||||||
pop_val = list(map(lambda v: max_val - v, pop_val))
|
convert_pop_val = list(map(lambda v: max_val - v, pop_val))
|
||||||
|
|
||||||
# crossover and mutation
|
# crossover and mutation
|
||||||
c = 0
|
c = 0
|
||||||
new_population = []
|
new_population, new_pop_val = [], []
|
||||||
for pop in range(population_size):
|
for pop in range(population_size):
|
||||||
if pop % 2 == 0 and np.random.random() < crossover_rate:
|
if pop % 2 == 0 and np.random.random() < crossover_rate:
|
||||||
index1, index2 = roulette_wheel_selection(pop_val), -1
|
index1, index2 = roulette_wheel_selection(convert_pop_val), -1
|
||||||
while True:
|
while True:
|
||||||
index2 = roulette_wheel_selection(pop_val)
|
index2 = roulette_wheel_selection(convert_pop_val)
|
||||||
if index1 != index2:
|
if index1 != index2:
|
||||||
break
|
break
|
||||||
# 两点交叉算子
|
# 两点交叉算子
|
||||||
@ -552,13 +551,27 @@ def optimizer_hybrid_genetic(pcb_data, component_data, hinter=True):
|
|||||||
new_population.append(offspring1)
|
new_population.append(offspring1)
|
||||||
new_population.append(offspring2)
|
new_population.append(offspring2)
|
||||||
|
|
||||||
# selection
|
val, _, _ = cal_individual_val(component_nozzle, component_point_pos, designated_nozzle,
|
||||||
top_k_index = get_top_k_value(pop_val, population_size - len(new_population))
|
pickup_group,
|
||||||
|
pickup_group_cycle, pair_group, feeder_part_arrange, offspring1)
|
||||||
|
new_pop_val.append(val)
|
||||||
|
|
||||||
|
val, _, _ = cal_individual_val(component_nozzle, component_point_pos, designated_nozzle,
|
||||||
|
pickup_group,
|
||||||
|
pickup_group_cycle, pair_group, feeder_part_arrange, offspring2)
|
||||||
|
new_pop_val.append(val)
|
||||||
|
|
||||||
|
# generate next generation
|
||||||
|
top_k_index = get_top_k_value(pop_val, population_size - len(new_population), reverse=False)
|
||||||
for index in top_k_index:
|
for index in top_k_index:
|
||||||
new_population.append(population[index])
|
new_population.append(population[index])
|
||||||
|
new_pop_val.append(pop_val[index])
|
||||||
|
|
||||||
population = new_population
|
population = new_population
|
||||||
|
pop_val = new_pop_val
|
||||||
pbar.update(1)
|
pbar.update(1)
|
||||||
|
|
||||||
|
best_individual = population[np.argmin(pop_val)]
|
||||||
|
|
||||||
return convert_individual_2_result(component_data, component_point_pos, designated_nozzle, pickup_group,
|
return convert_individual_2_result(component_data, component_point_pos, designated_nozzle, pickup_group,
|
||||||
pickup_group_cycle, pair_group, feeder_lane, best_individual)
|
pickup_group_cycle, pair_group, feeder_lane, best_individual)
|
||||||
|
@ -3,11 +3,11 @@ from base_optimizer.optimizer_common import *
|
|||||||
|
|
||||||
|
|
||||||
@timer_wrapper
|
@timer_wrapper
|
||||||
def optimizer_scanbased(component_data, pcb_data, hinter):
|
def optimizer_genetic_scanning(component_data, pcb_data, hinter):
|
||||||
|
|
||||||
population_size = 200 # 种群规模
|
population_size = 200 # 种群规模
|
||||||
crossover_rate, mutation_rate = .4, .02
|
crossover_rate, mutation_rate = .4, .02
|
||||||
n_generation = 5
|
n_generation = 500
|
||||||
|
|
||||||
component_points = [0] * len(component_data)
|
component_points = [0] * len(component_data)
|
||||||
for i in range(len(pcb_data)):
|
for i in range(len(pcb_data)):
|
||||||
@ -31,49 +31,51 @@ def optimizer_scanbased(component_data, pcb_data, hinter):
|
|||||||
|
|
||||||
pop_val.append(feeder_arrange_evaluate(feeder_slot_result, cycle_result))
|
pop_val.append(feeder_arrange_evaluate(feeder_slot_result, cycle_result))
|
||||||
|
|
||||||
# todo: 过程写的有问题,暂时不想改
|
sigma_scaling(pop_val, 1)
|
||||||
|
|
||||||
with tqdm(total=n_generation) as pbar:
|
with tqdm(total=n_generation) as pbar:
|
||||||
pbar.set_description('hybrid genetic process')
|
pbar.set_description('hybrid genetic process')
|
||||||
|
new_pop_val, new_pop_individual = [], []
|
||||||
|
|
||||||
|
# min-max convert
|
||||||
|
max_val = 1.5 * max(pop_val)
|
||||||
|
convert_pop_val = list(map(lambda v: max_val - v, pop_val))
|
||||||
for _ in range(n_generation):
|
for _ in range(n_generation):
|
||||||
# 交叉
|
# 交叉
|
||||||
for pop in range(population_size):
|
for pop in range(population_size):
|
||||||
if pop % 2 == 0 and np.random.random() < crossover_rate:
|
if pop % 2 == 0 and np.random.random() < crossover_rate:
|
||||||
index1, index2 = roulette_wheel_selection(pop_val), -1
|
index1, index2 = roulette_wheel_selection(convert_pop_val), -1
|
||||||
while True:
|
while True:
|
||||||
index2 = roulette_wheel_selection(pop_val)
|
index2 = roulette_wheel_selection(convert_pop_val)
|
||||||
if index1 != index2:
|
if index1 != index2:
|
||||||
break
|
break
|
||||||
|
|
||||||
# 两点交叉算子
|
# 两点交叉算子
|
||||||
offspring1, offspring2 = cycle_crossover(pop_individual[index1], pop_individual[index2])
|
offspring1, offspring2 = cycle_crossover(pop_individual[index1], pop_individual[index2])
|
||||||
|
|
||||||
|
# 变异
|
||||||
|
if np.random.random() < mutation_rate:
|
||||||
|
offspring1 = swap_mutation(offspring1)
|
||||||
|
|
||||||
|
if np.random.random() < mutation_rate:
|
||||||
|
offspring2 = swap_mutation(offspring2)
|
||||||
|
|
||||||
_, cycle_result, feeder_slot_result = convert_individual_2_result(component_points, offspring1)
|
_, cycle_result, feeder_slot_result = convert_individual_2_result(component_points, offspring1)
|
||||||
pop_val.append(feeder_arrange_evaluate(feeder_slot_result, cycle_result))
|
new_pop_val.append(feeder_arrange_evaluate(feeder_slot_result, cycle_result))
|
||||||
pop_individual.append(offspring1)
|
new_pop_individual.append(offspring1)
|
||||||
|
|
||||||
_, cycle_result, feeder_slot_result = convert_individual_2_result(component_points, offspring2)
|
_, cycle_result, feeder_slot_result = convert_individual_2_result(component_points, offspring2)
|
||||||
pop_val.append(feeder_arrange_evaluate(feeder_slot_result, cycle_result))
|
new_pop_val.append(feeder_arrange_evaluate(feeder_slot_result, cycle_result))
|
||||||
pop_individual.append(offspring2)
|
new_pop_individual.append(offspring2)
|
||||||
|
|
||||||
sigma_scaling(pop_val, 1)
|
# generate next generation
|
||||||
|
top_k_index = get_top_k_value(pop_val, population_size - len(new_pop_individual), reverse=False)
|
||||||
|
for index in top_k_index:
|
||||||
|
new_pop_individual.append(pop_individual[index])
|
||||||
|
new_pop_val.append(pop_val[index])
|
||||||
|
|
||||||
# 变异
|
pop_individual, pop_val = new_pop_individual, new_pop_val
|
||||||
if np.random.random() < mutation_rate:
|
sigma_scaling(pop_val, 1)
|
||||||
index_ = roulette_wheel_selection(pop_val)
|
|
||||||
offspring = swap_mutation(pop_individual[index_])
|
|
||||||
_, cycle_result, feeder_slot_result = convert_individual_2_result(component_points, offspring)
|
|
||||||
|
|
||||||
pop_val.append(feeder_arrange_evaluate(feeder_slot_result, cycle_result))
|
|
||||||
pop_individual.append(offspring)
|
|
||||||
|
|
||||||
sigma_scaling(pop_val, 1)
|
|
||||||
|
|
||||||
new_population, new_popval = [], []
|
|
||||||
for index in get_top_k_value(pop_val, population_size):
|
|
||||||
new_population.append(pop_individual[index])
|
|
||||||
new_popval.append(pop_val[index])
|
|
||||||
|
|
||||||
pop_individual, pop_val = new_population, new_popval
|
|
||||||
|
|
||||||
# select the best individual
|
# select the best individual
|
||||||
pop = np.argmin(pop_val)
|
pop = np.argmin(pop_val)
|
||||||
@ -98,7 +100,6 @@ def convert_individual_2_result(component_points, pop):
|
|||||||
feeder_part[gene], feeder_base_points[gene] = idx, component_points[idx]
|
feeder_part[gene], feeder_base_points[gene] = idx, component_points[idx]
|
||||||
|
|
||||||
# TODO: 暂时未考虑可用吸嘴数的限制
|
# TODO: 暂时未考虑可用吸嘴数的限制
|
||||||
# for _ in range(math.ceil(sum(component_points) / max_head_index)):
|
|
||||||
while True:
|
while True:
|
||||||
# === 周期内循环 ===
|
# === 周期内循环 ===
|
||||||
assigned_part = [-1 for _ in range(max_head_index)] # 当前扫描到的头分配元件信息
|
assigned_part = [-1 for _ in range(max_head_index)] # 当前扫描到的头分配元件信息
|
||||||
|
@ -27,7 +27,7 @@ def load_data(filename: str, default_feeder_limit=1, load_cp_data=True, load_fee
|
|||||||
|
|
||||||
# 注册元件检查
|
# 注册元件检查
|
||||||
part_feeder_assign = defaultdict(set)
|
part_feeder_assign = defaultdict(set)
|
||||||
part_col = ["part", "desc", "fdr", "nz", 'camera', 'group', 'feeder-limit']
|
part_col = ["part", "desc", "fdr", "nz", 'camera', 'group', 'feeder-limit', 'points']
|
||||||
try:
|
try:
|
||||||
if load_cp_data:
|
if load_cp_data:
|
||||||
component_data = pd.DataFrame(pd.read_csv(filepath_or_buffer='component.txt', sep='\t', header=None),
|
component_data = pd.DataFrame(pd.read_csv(filepath_or_buffer='component.txt', sep='\t', header=None),
|
||||||
@ -40,18 +40,18 @@ def load_data(filename: str, default_feeder_limit=1, load_cp_data=True, load_fee
|
|||||||
for _, data in pcb_data.iterrows():
|
for _, data in pcb_data.iterrows():
|
||||||
part, nozzle = data.part, data.nz.split(' ')[1]
|
part, nozzle = data.part, data.nz.split(' ')[1]
|
||||||
slot = data['fdr'].split(' ')[0]
|
slot = data['fdr'].split(' ')[0]
|
||||||
|
|
||||||
if part not in component_data['part'].values:
|
if part not in component_data['part'].values:
|
||||||
if not cp_auto_register:
|
if not cp_auto_register:
|
||||||
raise Exception("unregistered component: " + component_data['part'].values)
|
raise Exception("unregistered component: " + component_data['part'].values)
|
||||||
else:
|
else:
|
||||||
component_data = pd.concat([component_data, pd.DataFrame(
|
component_data = pd.concat([component_data, pd.DataFrame(
|
||||||
[part, '', 'SM8', nozzle, '飞行相机1', 'CHIP-Rect', default_feeder_limit], index=part_col).T],
|
[part, '', 'SM8', nozzle, '飞行相机1', 'CHIP-Rect', default_feeder_limit, 0], index=part_col).T],
|
||||||
ignore_index=True)
|
ignore_index=True)
|
||||||
# warning_info = 'register component ' + part + ' with default feeder type'
|
# warning_info = 'register component ' + part + ' with default feeder type'
|
||||||
# warnings.warn(warning_info, UserWarning)
|
# warnings.warn(warning_info, UserWarning)
|
||||||
part_index = component_data[component_data['part'] == part].index.tolist()[0]
|
part_index = component_data[component_data['part'] == part].index.tolist()[0]
|
||||||
part_feeder_assign[part].add(slot)
|
part_feeder_assign[part].add(slot)
|
||||||
|
component_data.loc[part_index]['points'] += 1
|
||||||
|
|
||||||
if nozzle != 'A' and component_data.loc[part_index]['nz'] != nozzle:
|
if nozzle != 'A' and component_data.loc[part_index]['nz'] != nozzle:
|
||||||
warning_info = 'the nozzle type of component ' + part + ' is not consistent with the pcb data'
|
warning_info = 'the nozzle type of component ' + part + ' is not consistent with the pcb data'
|
||||||
@ -64,9 +64,8 @@ def load_data(filename: str, default_feeder_limit=1, load_cp_data=True, load_fee
|
|||||||
# 读取供料器基座数据
|
# 读取供料器基座数据
|
||||||
feeder_data = pd.DataFrame(columns=['slot', 'part', 'arg']) # arg表示是否为预分配,不表示分配数目
|
feeder_data = pd.DataFrame(columns=['slot', 'part', 'arg']) # arg表示是否为预分配,不表示分配数目
|
||||||
if load_feeder_data:
|
if load_feeder_data:
|
||||||
for data in pcb_data.iterrows():
|
for _, data in pcb_data.iterrows():
|
||||||
fdr = data[1]['fdr']
|
slot, part = data['fdr'].split(' ')
|
||||||
slot, part = fdr.split(' ')
|
|
||||||
if slot[0] != 'F' and slot[0] != 'R':
|
if slot[0] != 'F' and slot[0] != 'R':
|
||||||
continue
|
continue
|
||||||
slot = int(slot[1:]) if slot[0] == 'F' else int(slot[1:]) + max_slot_index // 2
|
slot = int(slot[1:]) if slot[0] == 'F' else int(slot[1:]) + max_slot_index // 2
|
||||||
@ -80,6 +79,5 @@ def load_data(filename: str, default_feeder_limit=1, load_cp_data=True, load_fee
|
|||||||
|
|
||||||
feeder_data.sort_values(by='slot', ascending=True, inplace=True, ignore_index=True)
|
feeder_data.sort_values(by='slot', ascending=True, inplace=True, ignore_index=True)
|
||||||
|
|
||||||
# plt.scatter(pcb_data["x"], pcb_data["y"])
|
pcb_data = pcb_data.sort_values(by="x", ascending=False)
|
||||||
# plt.show()
|
|
||||||
return pcb_data, component_data, feeder_data
|
return pcb_data, component_data, feeder_data
|
||||||
|
117
optimizer.py
117
optimizer.py
@ -1,3 +1,4 @@
|
|||||||
|
import copy
|
||||||
import math
|
import math
|
||||||
|
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
@ -15,10 +16,21 @@ from optimizer_genetic import *
|
|||||||
from optimizer_heuristic import *
|
from optimizer_heuristic import *
|
||||||
|
|
||||||
|
|
||||||
def optimizer(pcb_data, component_data, assembly_line_optimizer, single_machine_optimizer):
|
def deviation(data):
|
||||||
assignment_result = assemblyline_optimizer_genetic(pcb_data, component_data)
|
assert len(data) > 0
|
||||||
|
average, variance = sum(data) / len(data), 0
|
||||||
|
for v in data:
|
||||||
|
variance += (v - average) ** 2
|
||||||
|
return variance / len(data)
|
||||||
|
|
||||||
# assignment_result = [[0, 0, 0, 0, 216, 0, 0], [0, 0, 0, 0, 216, 0, 0], [36, 24, 12, 12, 0, 36, 12]]
|
|
||||||
|
def optimizer(pcb_data, component_data, assembly_line_optimizer, single_machine_optimizer):
|
||||||
|
# todo: 由于吸嘴更换更因素的存在,在处理PCB8数据时,遗传算法因在负载均衡过程中对这一因素进行了考虑,性能更优
|
||||||
|
assignment_result = assemblyline_optimizer_heuristic(pcb_data, component_data)
|
||||||
|
# assignment_result = assemblyline_optimizer_genetic(pcb_data, component_data)
|
||||||
|
print(assignment_result)
|
||||||
|
|
||||||
|
assignment_result_cpy = copy.deepcopy(assignment_result)
|
||||||
placement_points, placement_time = [], []
|
placement_points, placement_time = [], []
|
||||||
partial_pcb_data, partial_component_data = defaultdict(pd.DataFrame), defaultdict(pd.DataFrame)
|
partial_pcb_data, partial_component_data = defaultdict(pd.DataFrame), defaultdict(pd.DataFrame)
|
||||||
for machine_index in range(max_machine_index):
|
for machine_index in range(max_machine_index):
|
||||||
@ -26,7 +38,9 @@ def optimizer(pcb_data, component_data, assembly_line_optimizer, single_machine_
|
|||||||
partial_component_data[machine_index] = component_data.copy(deep=True)
|
partial_component_data[machine_index] = component_data.copy(deep=True)
|
||||||
placement_points.append(sum(assignment_result[machine_index]))
|
placement_points.append(sum(assignment_result[machine_index]))
|
||||||
|
|
||||||
# averagely assign available feeder
|
assert sum(placement_points) == len(pcb_data)
|
||||||
|
|
||||||
|
# === averagely assign available feeder ===
|
||||||
for part_index, data in component_data.iterrows():
|
for part_index, data in component_data.iterrows():
|
||||||
feeder_limit = data['feeder-limit']
|
feeder_limit = data['feeder-limit']
|
||||||
feeder_points = [assignment_result[machine_index][part_index] for machine_index in range(max_machine_index)]
|
feeder_points = [assignment_result[machine_index][part_index] for machine_index in range(max_machine_index)]
|
||||||
@ -49,11 +63,14 @@ def optimizer(pcb_data, component_data, assembly_line_optimizer, single_machine_
|
|||||||
partial_component_data[machine_index].loc[part_index]['feeder-limit'] += 1
|
partial_component_data[machine_index].loc[part_index]['feeder-limit'] += 1
|
||||||
feeder_limit -= 1
|
feeder_limit -= 1
|
||||||
|
|
||||||
|
for machine_index in range(max_machine_index):
|
||||||
|
if feeder_points[machine_index] > 0:
|
||||||
|
assert partial_component_data[machine_index].loc[part_index]['feeder-limit'] > 0
|
||||||
|
|
||||||
|
# === assign placements ===
|
||||||
component_machine_index = [0 for _ in range(len(component_data))]
|
component_machine_index = [0 for _ in range(len(component_data))]
|
||||||
pcb_data = pcb_data.sort_values(by="x", ascending=False)
|
|
||||||
for _, data in pcb_data.iterrows():
|
for _, data in pcb_data.iterrows():
|
||||||
part = data['part']
|
part_index = component_data[component_data['part'] == data['part']].index.tolist()[0]
|
||||||
part_index = component_data[component_data['part'] == part].index.tolist()[0]
|
|
||||||
while True:
|
while True:
|
||||||
machine_index = component_machine_index[part_index]
|
machine_index = component_machine_index[part_index]
|
||||||
if assignment_result[machine_index][part_index] == 0:
|
if assignment_result[machine_index][part_index] == 0:
|
||||||
@ -64,11 +81,60 @@ def optimizer(pcb_data, component_data, assembly_line_optimizer, single_machine_
|
|||||||
assignment_result[machine_index][part_index] -= 1
|
assignment_result[machine_index][part_index] -= 1
|
||||||
partial_pcb_data[machine_index] = pd.concat([partial_pcb_data[machine_index], pd.DataFrame(data).T])
|
partial_pcb_data[machine_index] = pd.concat([partial_pcb_data[machine_index], pd.DataFrame(data).T])
|
||||||
|
|
||||||
|
# === adjust the number of available feeders for single optimization separately ===
|
||||||
for machine_index, data in partial_pcb_data.items():
|
for machine_index, data in partial_pcb_data.items():
|
||||||
data = data.reset_index(drop=True)
|
data = data.reset_index(drop=True)
|
||||||
if len(data) == 0:
|
if len(data) == 0:
|
||||||
continue
|
continue
|
||||||
|
|
||||||
|
part_info = [] # part info list:(part index, part points, available feeder-num, upper feeder-num)
|
||||||
|
for part_index, cp_data in partial_component_data[machine_index].iterrows():
|
||||||
|
if assignment_result_cpy[machine_index][part_index]:
|
||||||
|
part_info.append(
|
||||||
|
[part_index, assignment_result_cpy[machine_index][part_index], 1, cp_data['feeder-limit']])
|
||||||
|
|
||||||
|
part_info = sorted(part_info, key=lambda x: x[1], reverse=True)
|
||||||
|
start_index, end_index = 0, min(max_head_index - 1, len(part_info) - 1)
|
||||||
|
while start_index < len(part_info):
|
||||||
|
assign_part_point, assign_part_index = [], []
|
||||||
|
for idx_ in range(start_index, end_index + 1):
|
||||||
|
for _ in range(part_info[idx_][2]):
|
||||||
|
assign_part_point.append(part_info[idx_][1] / part_info[idx_][2])
|
||||||
|
assign_part_index.append(idx_)
|
||||||
|
|
||||||
|
variance = deviation(assign_part_point)
|
||||||
|
while start_index != end_index:
|
||||||
|
part_info_index = assign_part_index[np.argmax(assign_part_point)]
|
||||||
|
|
||||||
|
if part_info[part_info_index][2] < part_info[part_info_index][3]: # 供料器数目上限的限制
|
||||||
|
part_info[part_info_index][2] += 1
|
||||||
|
end_index -= 1
|
||||||
|
|
||||||
|
new_assign_part_point, new_assign_part_index = [], []
|
||||||
|
for idx_ in range(start_index, end_index + 1):
|
||||||
|
for _ in range(part_info[idx_][2]):
|
||||||
|
new_assign_part_point.append(part_info[idx_][1] / part_info[idx_][2])
|
||||||
|
new_assign_part_index.append(idx_)
|
||||||
|
|
||||||
|
new_variance = deviation(new_assign_part_point)
|
||||||
|
if variance < new_variance:
|
||||||
|
part_info[part_info_index][2] -= 1
|
||||||
|
end_index += 1
|
||||||
|
break
|
||||||
|
|
||||||
|
variance = new_variance
|
||||||
|
assign_part_index, assign_part_point = new_assign_part_index, new_assign_part_point
|
||||||
|
else:
|
||||||
|
break
|
||||||
|
|
||||||
|
start_index = end_index + 1
|
||||||
|
end_index = min(start_index + max_head_index - 1, len(part_info) - 1)
|
||||||
|
|
||||||
|
# update available feeder number
|
||||||
|
max_avl_feeder = max(part_info, key=lambda x: x[2])[2]
|
||||||
|
for info in part_info:
|
||||||
|
partial_component_data[machine_index].loc[info[0]]['feeder-limit'] = math.ceil(info[2] / max_avl_feeder)
|
||||||
|
|
||||||
placement_time.append(base_optimizer(machine_index + 1, data, partial_component_data[machine_index],
|
placement_time.append(base_optimizer(machine_index + 1, data, partial_component_data[machine_index],
|
||||||
feeder_data=pd.DataFrame(columns=['slot', 'part', 'arg']),
|
feeder_data=pd.DataFrame(columns=['slot', 'part', 'arg']),
|
||||||
method=single_machine_optimizer, hinter=True))
|
method=single_machine_optimizer, hinter=True))
|
||||||
@ -86,13 +152,15 @@ def optimizer(pcb_data, component_data, assembly_line_optimizer, single_machine_
|
|||||||
|
|
||||||
# todo: 不同类型元件的组装时间差异
|
# todo: 不同类型元件的组装时间差异
|
||||||
def base_optimizer(machine_index, pcb_data, component_data, feeder_data=None, method='', hinter=False):
|
def base_optimizer(machine_index, pcb_data, component_data, feeder_data=None, method='', hinter=False):
|
||||||
|
|
||||||
if method == 'cell_division': # 基于元胞分裂的遗传算法
|
if method == 'cell_division': # 基于元胞分裂的遗传算法
|
||||||
component_result, cycle_result, feeder_slot_result = optimizer_celldivision(pcb_data, component_data, False)
|
component_result, cycle_result, feeder_slot_result = optimizer_celldivision(pcb_data, component_data,
|
||||||
|
hinter=False)
|
||||||
placement_result, head_sequence = greedy_placement_route_generation(component_data, pcb_data, component_result,
|
placement_result, head_sequence = greedy_placement_route_generation(component_data, pcb_data, component_result,
|
||||||
cycle_result, feeder_slot_result)
|
cycle_result, feeder_slot_result)
|
||||||
elif method == 'feeder_priority': # 基于基座扫描的供料器优先算法
|
elif method == 'feeder_scan': # 基于基座扫描的供料器优先算法
|
||||||
# 第1步:分配供料器位置
|
# 第1步:分配供料器位置
|
||||||
nozzle_pattern = feeder_allocate(component_data, pcb_data, feeder_data, False)
|
nozzle_pattern = feeder_allocate(component_data, pcb_data, feeder_data, figure=False)
|
||||||
# 第2步:扫描供料器基座,确定元件拾取的先后顺序
|
# 第2步:扫描供料器基座,确定元件拾取的先后顺序
|
||||||
component_result, cycle_result, feeder_slot_result = feeder_base_scan(component_data, pcb_data, feeder_data,
|
component_result, cycle_result, feeder_slot_result = feeder_base_scan(component_data, pcb_data, feeder_data,
|
||||||
nozzle_pattern)
|
nozzle_pattern)
|
||||||
@ -105,25 +173,26 @@ def base_optimizer(machine_index, pcb_data, component_data, feeder_data=None, me
|
|||||||
|
|
||||||
elif method == 'hybrid_genetic': # 基于拾取组的混合遗传算法
|
elif method == 'hybrid_genetic': # 基于拾取组的混合遗传算法
|
||||||
component_result, cycle_result, feeder_slot_result, placement_result, head_sequence = optimizer_hybrid_genetic(
|
component_result, cycle_result, feeder_slot_result, placement_result, head_sequence = optimizer_hybrid_genetic(
|
||||||
pcb_data, component_data, False)
|
pcb_data, component_data, hinter=False)
|
||||||
|
|
||||||
elif method == 'aggregation': # 基于batch-level的整数规划 + 启发式算法
|
elif method == 'aggregation': # 基于batch-level的整数规划 + 启发式算法
|
||||||
component_result, cycle_result, feeder_slot_result, placement_result, head_sequence = optimizer_aggregation(
|
component_result, cycle_result, feeder_slot_result, placement_result, head_sequence = optimizer_aggregation(
|
||||||
component_data, pcb_data)
|
component_data, pcb_data)
|
||||||
elif method == 'scan_based':
|
elif method == 'genetic_scanning':
|
||||||
component_result, cycle_result, feeder_slot_result, placement_result, head_sequence = optimizer_scanbased(
|
component_result, cycle_result, feeder_slot_result, placement_result, head_sequence = optimizer_genetic_scanning(
|
||||||
component_data, pcb_data, False)
|
component_data, pcb_data, hinter=False)
|
||||||
else:
|
else:
|
||||||
raise 'method is not existed'
|
raise 'method is not existed'
|
||||||
|
|
||||||
if hinter:
|
if hinter:
|
||||||
optimization_assign_result(component_data, pcb_data, component_result, cycle_result, feeder_slot_result,
|
optimization_assign_result(component_data, pcb_data, component_result, cycle_result, feeder_slot_result,
|
||||||
nozzle_hinter=False, component_hinter=False, feeder_hinter=False)
|
nozzle_hinter=True, component_hinter=False, feeder_hinter=False)
|
||||||
|
|
||||||
print('----- Placement machine ' + str(machine_index) + ' ----- ')
|
print('----- Placement machine ' + str(machine_index) + ' ----- ')
|
||||||
print('-Cycle counter: {}'.format(sum(cycle_result)))
|
print('-Cycle counter: {}'.format(sum(cycle_result)))
|
||||||
|
|
||||||
total_nozzle_change_counter, total_pick_counter = 0, 0
|
total_nozzle_change_counter, total_pick_counter = 0, 0
|
||||||
|
total_pick_movement = 0
|
||||||
assigned_nozzle = ['' if idx == -1 else component_data.loc[idx]['nz'] for idx in component_result[0]]
|
assigned_nozzle = ['' if idx == -1 else component_data.loc[idx]['nz'] for idx in component_result[0]]
|
||||||
|
|
||||||
for cycle in range(len(cycle_result)):
|
for cycle in range(len(cycle_result)):
|
||||||
@ -141,25 +210,31 @@ def base_optimizer(machine_index, pcb_data, component_data, feeder_data=None, me
|
|||||||
pick_slot.add(feeder_slot_result[cycle][head] - head * interval_ratio)
|
pick_slot.add(feeder_slot_result[cycle][head] - head * interval_ratio)
|
||||||
total_pick_counter += len(pick_slot) * cycle_result[cycle]
|
total_pick_counter += len(pick_slot) * cycle_result[cycle]
|
||||||
|
|
||||||
|
pick_slot = list(pick_slot)
|
||||||
|
pick_slot.sort()
|
||||||
|
for idx in range(len(pick_slot) - 1):
|
||||||
|
total_pick_movement += abs(pick_slot[idx+1] - pick_slot[idx])
|
||||||
|
|
||||||
print('-Nozzle change counter: {}'.format(total_nozzle_change_counter))
|
print('-Nozzle change counter: {}'.format(total_nozzle_change_counter))
|
||||||
print('-Pick operation counter: {}'.format(total_pick_counter))
|
print('-Pick operation counter: {}'.format(total_pick_counter))
|
||||||
|
print('-Pick movement: {}'.format(total_pick_movement))
|
||||||
print('------------------------------ ')
|
print('------------------------------ ')
|
||||||
|
|
||||||
# 估算贴装用时
|
# 估算贴装用时
|
||||||
return placement_time_estimate(component_data, pcb_data, component_result, cycle_result, feeder_slot_result,
|
return placement_time_estimate(component_data, pcb_data, component_result, cycle_result, feeder_slot_result,
|
||||||
placement_result, head_sequence, False)
|
placement_result, head_sequence, hinter=False)
|
||||||
|
|
||||||
|
|
||||||
|
@timer_wrapper
|
||||||
def main():
|
def main():
|
||||||
# warnings.simplefilter('ignore')
|
# warnings.simplefilter('ignore')
|
||||||
# 参数解析
|
# 参数解析
|
||||||
parser = argparse.ArgumentParser(description='assembly line optimizer implementation')
|
parser = argparse.ArgumentParser(description='assembly line optimizer implementation')
|
||||||
parser.add_argument('--filename', default='PCB1 - FL19-30W.txt', type=str, help='load pcb data')
|
parser.add_argument('--filename', default='PCB.txt', type=str, help='load pcb data')
|
||||||
parser.add_argument('--auto_register', default=1, type=int, help='register the component according the pcb data')
|
parser.add_argument('--auto_register', default=1, type=int, help='register the component according the pcb data')
|
||||||
parser.add_argument('--base_optimizer', default='feeder_priority', type=str,
|
parser.add_argument('--base_optimizer', default='feeder_scan', type=str, help='base optimizer for single machine')
|
||||||
help='base optimizer for single machine')
|
parser.add_argument('--assembly_optimizer', default='heuristic', type=str, help='optimizer for PCB Assembly Line')
|
||||||
parser.add_argument('--assembly_optimizer', default='genetic', type=str, help='optimizer for PCB Assembly Line')
|
parser.add_argument('--feeder_limit', default=3, type=int,
|
||||||
parser.add_argument('--feeder_limit', default=2, type=int,
|
|
||||||
help='the upper feeder limit for each type of component')
|
help='the upper feeder limit for each type of component')
|
||||||
params = parser.parse_args()
|
params = parser.parse_args()
|
||||||
|
|
||||||
|
@ -1,14 +1,14 @@
|
|||||||
|
# implementation of <<An integrated allocation method for the PCB assembly line balancing problem with nozzle changes>>
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
|
|
||||||
from base_optimizer.optimizer_common import *
|
from base_optimizer.optimizer_common import *
|
||||||
|
|
||||||
|
|
||||||
def selective_initialization(component_points, component_feeders, population_size):
|
def selective_initialization(component_points, component_feeders, population_size):
|
||||||
population = [] # population initialization
|
population = [] # population initialization
|
||||||
|
|
||||||
for _ in range(population_size):
|
for _ in range(population_size):
|
||||||
individual = []
|
individual = []
|
||||||
for part_index, points in component_points.items():
|
for part_index, points in component_points:
|
||||||
if points == 0:
|
if points == 0:
|
||||||
continue
|
continue
|
||||||
# 可用机器数
|
# 可用机器数
|
||||||
@ -50,7 +50,7 @@ def selective_crossover(component_points, component_feeders, mother, father, non
|
|||||||
one_counter, feasible_cut_line = 0, []
|
one_counter, feasible_cut_line = 0, []
|
||||||
|
|
||||||
idx = 0
|
idx = 0
|
||||||
for part_index, points in component_points.items():
|
for part_index, points in component_points:
|
||||||
one_counter = 0
|
one_counter = 0
|
||||||
|
|
||||||
idx_, mother_cut_line, father_cut_line = 0, [-1], [-1]
|
idx_, mother_cut_line, father_cut_line = 0, [-1], [-1]
|
||||||
@ -136,7 +136,7 @@ def cal_individual_val(component_points, component_nozzle, individual):
|
|||||||
machine_component_points = [[] for _ in range(max_machine_index)]
|
machine_component_points = [[] for _ in range(max_machine_index)]
|
||||||
|
|
||||||
# decode the component allocation
|
# decode the component allocation
|
||||||
for points in component_points.values():
|
for _, points in component_points:
|
||||||
component_gene = individual[idx: idx + points + max_machine_index - 1]
|
component_gene = individual[idx: idx + points + max_machine_index - 1]
|
||||||
machine_idx, component_counter = 0, 0
|
machine_idx, component_counter = 0, 0
|
||||||
for gene in component_gene:
|
for gene in component_gene:
|
||||||
@ -206,6 +206,7 @@ def assemblyline_optimizer_genetic(pcb_data, component_data):
|
|||||||
# crossover rate & mutation rate: 80% & 10%
|
# crossover rate & mutation rate: 80% & 10%
|
||||||
# population size: 200
|
# population size: 200
|
||||||
# the number of generation: 500
|
# the number of generation: 500
|
||||||
|
np.random.seed(0)
|
||||||
crossover_rate, mutation_rate = 0.8, 0.1
|
crossover_rate, mutation_rate = 0.8, 0.1
|
||||||
population_size, n_generations = 200, 500
|
population_size, n_generations = 200, 500
|
||||||
|
|
||||||
@ -219,6 +220,8 @@ def assemblyline_optimizer_genetic(pcb_data, component_data):
|
|||||||
component_feeders[part_index] = component_data.loc[part_index]['feeder-limit']
|
component_feeders[part_index] = component_data.loc[part_index]['feeder-limit']
|
||||||
component_nozzle[part_index] = nozzle
|
component_nozzle[part_index] = nozzle
|
||||||
|
|
||||||
|
component_points = sorted(component_points.items(), key=lambda x: x[0]) # 决定染色体排列顺序
|
||||||
|
|
||||||
# population initialization
|
# population initialization
|
||||||
best_popval = []
|
best_popval = []
|
||||||
population = selective_initialization(component_points, component_feeders, population_size)
|
population = selective_initialization(component_points, component_feeders, population_size)
|
||||||
|
@ -1,16 +1,157 @@
|
|||||||
|
import math
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
from base_optimizer.optimizer_common import *
|
from base_optimizer.optimizer_common import *
|
||||||
|
from ortools.sat.python import cp_model
|
||||||
|
|
||||||
|
|
||||||
# TODO: 需要考虑贴装点分布位置的限制
|
# TODO: consider with the PCB placement topology
|
||||||
def assembly_time_estimator(pcb_data, component_data, assignment):
|
def assembly_time_estimator(component_points, component_feeders, component_nozzle, assignment_points):
|
||||||
return 0
|
# todo: how to deal with nozzle change
|
||||||
|
n_cycle, n_nz_change, n_gang_pick = 0, 0, 0
|
||||||
|
|
||||||
|
nozzle_heads, nozzle_points = defaultdict(int), defaultdict(int)
|
||||||
|
for idx, points in enumerate(assignment_points):
|
||||||
|
if points == 0:
|
||||||
|
continue
|
||||||
|
nozzle_points[component_nozzle[idx]] += points
|
||||||
|
nozzle_heads[component_nozzle[idx]] = 1
|
||||||
|
|
||||||
|
while sum(nozzle_heads.values()) != max_head_index:
|
||||||
|
max_cycle_nozzle = None
|
||||||
|
|
||||||
|
for nozzle, head_num in nozzle_heads.items():
|
||||||
|
if max_cycle_nozzle is None or nozzle_points[nozzle] / head_num > nozzle_points[max_cycle_nozzle] / \
|
||||||
|
nozzle_heads[max_cycle_nozzle]:
|
||||||
|
max_cycle_nozzle = nozzle
|
||||||
|
|
||||||
|
assert max_cycle_nozzle is not None
|
||||||
|
nozzle_heads[max_cycle_nozzle] += 1
|
||||||
|
|
||||||
|
n_cycle = max(map(lambda x: math.ceil(nozzle_points[x[0]] / x[1]), nozzle_heads.items()))
|
||||||
|
|
||||||
|
# calculate the number of simultaneous pickup
|
||||||
|
head_index, nozzle_cycle = 0, [[] for _ in range(max_head_index)]
|
||||||
|
for nozzle, heads in nozzle_heads.items():
|
||||||
|
head_index_cpy, points = head_index, nozzle_points[nozzle]
|
||||||
|
for _ in range(heads):
|
||||||
|
nozzle_cycle[head_index].append([nozzle, points // heads])
|
||||||
|
head_index += 1
|
||||||
|
|
||||||
|
points %= heads
|
||||||
|
while points:
|
||||||
|
nozzle_cycle[head_index_cpy][1] += 1
|
||||||
|
points -= 1
|
||||||
|
head_index_cpy += 1
|
||||||
|
|
||||||
|
# nozzle_cycle_index = [0 for _ in range(max_head_index)]
|
||||||
|
return n_cycle, n_nz_change, n_gang_pick
|
||||||
|
|
||||||
|
|
||||||
def assemblyline_optimizer_heuristic(pcb_data, component_data):
|
def assemblyline_optimizer_heuristic(pcb_data, component_data):
|
||||||
assignment_result = []
|
# the number of placement points, the number of available feeders, and nozzle type of component respectively
|
||||||
|
component_number = len(component_data)
|
||||||
|
|
||||||
|
component_points = [0 for _ in range(component_number)]
|
||||||
|
component_feeders = [0 for _ in range(component_number)]
|
||||||
|
component_nozzle = [0 for _ in range(component_number)]
|
||||||
|
component_part = [0 for _ in range(component_number)]
|
||||||
|
|
||||||
# for machine_index in range(max_machine_index):
|
nozzle_points = defaultdict(int) # the number of placements of nozzle
|
||||||
# assembly_time_estimator(pcb_data, component_data, assignment_result[machine_index])
|
|
||||||
|
for _, data in pcb_data.iterrows():
|
||||||
|
part_index = component_data[component_data['part'] == data['part']].index.tolist()[0]
|
||||||
|
nozzle = component_data.loc[part_index]['nz']
|
||||||
|
|
||||||
|
component_points[part_index] += 1
|
||||||
|
component_feeders[part_index] = component_data.loc[part_index]['feeder-limit']
|
||||||
|
# component_feeders[part_index] = math.ceil(component_data.loc[part_index]['feeder-limit'] / max_feeder_limit)
|
||||||
|
component_nozzle[part_index] = nozzle
|
||||||
|
component_part[part_index] = data['part']
|
||||||
|
|
||||||
|
nozzle_points[nozzle] += 1
|
||||||
|
|
||||||
|
# first step: generate the initial solution with equalized workload
|
||||||
|
assignment_result = [[0 for _ in range(len(component_points))] for _ in range(max_machine_index)]
|
||||||
|
assignment_points = [0 for _ in range(max_machine_index)]
|
||||||
|
|
||||||
|
# for part, points in enumerate(component_points):
|
||||||
|
# if component_nozzle[part] == 'CN065':
|
||||||
|
# assignment_result[1][part] += points
|
||||||
|
# assignment_points[1] += points
|
||||||
|
# component_points[part] = 0
|
||||||
|
# elif component_nozzle[part] == 'CN220':
|
||||||
|
# assignment_result[2][part] += points
|
||||||
|
# assignment_points[2] += points
|
||||||
|
# component_points[part] = 0
|
||||||
|
|
||||||
|
weighted_points = list(
|
||||||
|
map(lambda x: x[1] + 1e-5 * nozzle_points[component_nozzle[x[0]]], enumerate(component_points)))
|
||||||
|
|
||||||
|
for part_index in np.argsort(weighted_points):
|
||||||
|
if (total_points := component_points[part_index]) == 0: # total placements for each component type
|
||||||
|
continue
|
||||||
|
machine_set = []
|
||||||
|
|
||||||
|
# define the machine that assigning placement points (considering the feeder limitation)
|
||||||
|
for machine_index in np.argsort(assignment_points):
|
||||||
|
if len(machine_set) >= component_points[part_index] or len(machine_set) >= component_feeders[part_index]:
|
||||||
|
break
|
||||||
|
machine_set.append(machine_index)
|
||||||
|
|
||||||
|
# Allocation of mounting points to available machines according to the principle of equality
|
||||||
|
while total_points:
|
||||||
|
assign_machine = list(filter(lambda x: assignment_points[x] == min(assignment_points), machine_set))
|
||||||
|
|
||||||
|
if len(assign_machine) == len(machine_set):
|
||||||
|
# averagely assign point to all available machines
|
||||||
|
points = total_points // len(assign_machine)
|
||||||
|
for machine_index in machine_set:
|
||||||
|
assignment_points[machine_index] += points
|
||||||
|
assignment_result[machine_index][part_index] += points
|
||||||
|
|
||||||
|
total_points -= points * len(assign_machine)
|
||||||
|
for machine_index in machine_set:
|
||||||
|
if total_points == 0:
|
||||||
|
break
|
||||||
|
assignment_points[machine_index] += 1
|
||||||
|
assignment_result[machine_index][part_index] += 1
|
||||||
|
total_points -= 1
|
||||||
|
else:
|
||||||
|
# assigning placements to make up for the gap between the least and the second least
|
||||||
|
second_least_machine, second_least_machine_points = -1, max(assignment_points) + 1
|
||||||
|
for idx in machine_set:
|
||||||
|
if assignment_points[idx] < second_least_machine_points and assignment_points[idx] != min(
|
||||||
|
assignment_points):
|
||||||
|
second_least_machine_points = assignment_points[idx]
|
||||||
|
second_least_machine = idx
|
||||||
|
|
||||||
|
assert second_least_machine != -1
|
||||||
|
|
||||||
|
if len(assign_machine) * (second_least_machine_points - min(assignment_points)) < total_points:
|
||||||
|
min_points = min(assignment_points)
|
||||||
|
total_points -= len(assign_machine) * (second_least_machine_points - min_points)
|
||||||
|
for machine_index in assign_machine:
|
||||||
|
assignment_points[machine_index] += (second_least_machine_points - min_points)
|
||||||
|
assignment_result[machine_index][part_index] += (
|
||||||
|
second_least_machine_points - min_points)
|
||||||
|
else:
|
||||||
|
points = total_points // len(assign_machine)
|
||||||
|
for machine_index in assign_machine:
|
||||||
|
assignment_points[machine_index] += points
|
||||||
|
assignment_result[machine_index][part_index] += points
|
||||||
|
|
||||||
|
total_points -= points * len(assign_machine)
|
||||||
|
for machine_index in assign_machine:
|
||||||
|
if total_points == 0:
|
||||||
|
break
|
||||||
|
assignment_points[machine_index] += 1
|
||||||
|
assignment_result[machine_index][part_index] += 1
|
||||||
|
total_points -= 1
|
||||||
|
|
||||||
|
# todo: implementation
|
||||||
|
|
||||||
|
# second step: estimate the assembly time for each machine
|
||||||
|
# third step: adjust the assignment results to reduce maximal assembly time among all machines
|
||||||
|
|
||||||
return assignment_result
|
return assignment_result
|
||||||
|
11
optimizer_spidermonkey.py
Normal file
11
optimizer_spidermonkey.py
Normal file
@ -0,0 +1,11 @@
|
|||||||
|
# implementation of
|
||||||
|
# <<Hybrid spider monkey optimisation algorithm for multi-level planning and scheduling problems of assembly lines>>
|
||||||
|
def assemblyline_optimizer_spidermonkey(pcb_data, component_data):
|
||||||
|
# number of swarms: 10
|
||||||
|
# maximum number of groups: 5
|
||||||
|
# number of loops: 100
|
||||||
|
# food source population: 50
|
||||||
|
# mutation rate: 0.1
|
||||||
|
# crossover rate: 0.9
|
||||||
|
# computation time(s): 200
|
||||||
|
pass
|
@ -362,14 +362,24 @@ def optimization_assign_result(component_data, pcb_data, component_result, cycle
|
|||||||
|
|
||||||
nozzle_assign = pd.DataFrame(columns=columns)
|
nozzle_assign = pd.DataFrame(columns=columns)
|
||||||
for cycle, components in enumerate(component_result):
|
for cycle, components in enumerate(component_result):
|
||||||
nozzle_assign.loc[cycle, 'cycle'] = cycle_result[cycle]
|
nozzle_assign_row = len(nozzle_assign)
|
||||||
|
nozzle_assign.loc[nozzle_assign_row, 'cycle'] = cycle_result[cycle]
|
||||||
|
|
||||||
for head in range(max_head_index):
|
for head in range(max_head_index):
|
||||||
index = component_result[cycle][head]
|
index = component_result[cycle][head]
|
||||||
if index == -1:
|
if index == -1:
|
||||||
nozzle_assign.loc[cycle, 'H{}'.format(head + 1)] = ''
|
nozzle_assign.loc[nozzle_assign_row, 'H{}'.format(head + 1)] = ''
|
||||||
else:
|
else:
|
||||||
nozzle = component_data.loc[index]['nz']
|
nozzle = component_data.loc[index]['nz']
|
||||||
nozzle_assign.loc[cycle, 'H{}'.format(head + 1)] = nozzle
|
nozzle_assign.loc[nozzle_assign_row, 'H{}'.format(head + 1)] = nozzle
|
||||||
|
|
||||||
|
for head in range(max_head_index):
|
||||||
|
if nozzle_assign_row == 0 or nozzle_assign.loc[nozzle_assign_row - 1, 'H{}'.format(head + 1)] != \
|
||||||
|
nozzle_assign.loc[nozzle_assign_row, 'H{}'.format(head + 1)]:
|
||||||
|
break
|
||||||
|
else:
|
||||||
|
nozzle_assign.loc[nozzle_assign_row - 1, 'cycle'] += nozzle_assign.loc[nozzle_assign_row, 'cycle']
|
||||||
|
nozzle_assign.drop([len(nozzle_assign) - 1], inplace=True)
|
||||||
|
|
||||||
print(nozzle_assign)
|
print(nozzle_assign)
|
||||||
print('')
|
print('')
|
||||||
@ -449,17 +459,13 @@ def placement_time_estimate(component_data, pcb_data, component_result, cycle_re
|
|||||||
warnings.warn(info, UserWarning)
|
warnings.warn(info, UserWarning)
|
||||||
return 0.
|
return 0.
|
||||||
|
|
||||||
t_pick, t_place = .078, .051 # 贴装/拾取用时
|
total_pickup_time, total_round_time, total_place_time = .0, .0, 0 # 拾取用时、往返用时、贴装用时
|
||||||
t_nozzle_put, t_nozzle_pick = 0.9, 0.75 # 装卸吸嘴用时
|
total_operation_time = .0 # 操作用时
|
||||||
t_fix_camera_check = 0.12 # 固定相机检测时间
|
total_nozzle_change_counter = 0 # 总吸嘴更换次数
|
||||||
|
total_pick_counter = 0 # 总拾取次数
|
||||||
total_moving_time = .0 # 总移动用时
|
total_mount_distance, total_pick_distance = .0, .0 # 贴装距离、拾取距离
|
||||||
total_operation_time = .0 # 操作用时
|
total_distance = 0 # 总移动距离
|
||||||
total_nozzle_change_counter = 0 # 总吸嘴更换次数
|
cur_pos, next_pos = anc_marker_pos, [0, 0] # 贴装头当前位置
|
||||||
total_pick_counter = 0 # 总拾取次数
|
|
||||||
total_mount_distance, total_pick_distance = .0, .0 # 贴装距离、拾取距离
|
|
||||||
total_distance = 0 # 总移动距离
|
|
||||||
cur_pos, next_pos = anc_marker_pos, [0, 0] # 贴装头当前位置
|
|
||||||
|
|
||||||
# 初始化首个周期的吸嘴装配信息
|
# 初始化首个周期的吸嘴装配信息
|
||||||
nozzle_assigned = ['Empty' for _ in range(max_head_index)]
|
nozzle_assigned = ['Empty' for _ in range(max_head_index)]
|
||||||
@ -492,8 +498,10 @@ def placement_time_estimate(component_data, pcb_data, component_result, cycle_re
|
|||||||
# ANC处进行吸嘴更换
|
# ANC处进行吸嘴更换
|
||||||
if nozzle_pick_counter + nozzle_put_counter > 0:
|
if nozzle_pick_counter + nozzle_put_counter > 0:
|
||||||
next_pos = anc_marker_pos
|
next_pos = anc_marker_pos
|
||||||
total_moving_time += max(axis_moving_time(cur_pos[0] - next_pos[0], 0),
|
move_time = max(axis_moving_time(cur_pos[0] - next_pos[0], 0),
|
||||||
axis_moving_time(cur_pos[1] - next_pos[1], 1))
|
axis_moving_time(cur_pos[1] - next_pos[1], 1))
|
||||||
|
total_round_time += move_time
|
||||||
|
|
||||||
total_distance += max(abs(cur_pos[0] - next_pos[0]), abs(cur_pos[1] - next_pos[1]))
|
total_distance += max(abs(cur_pos[0] - next_pos[0]), abs(cur_pos[1] - next_pos[1]))
|
||||||
cur_pos = next_pos
|
cur_pos = next_pos
|
||||||
|
|
||||||
@ -501,15 +509,21 @@ def placement_time_estimate(component_data, pcb_data, component_result, cycle_re
|
|||||||
pick_slot = sorted(pick_slot, reverse=True)
|
pick_slot = sorted(pick_slot, reverse=True)
|
||||||
|
|
||||||
# 拾取路径(自右向左)
|
# 拾取路径(自右向左)
|
||||||
for slot in pick_slot:
|
for idx, slot in enumerate(pick_slot):
|
||||||
if slot < max_slot_index // 2:
|
if slot < max_slot_index // 2:
|
||||||
next_pos = [slotf1_pos[0] + slot_interval * (slot - 1), slotf1_pos[1]]
|
next_pos = [slotf1_pos[0] + slot_interval * (slot - 1), slotf1_pos[1]]
|
||||||
else:
|
else:
|
||||||
next_pos = [slotr1_pos[0] - slot_interval * (max_slot_index - slot - 1), slotr1_pos[1]]
|
next_pos = [slotr1_pos[0] - slot_interval * (max_slot_index - slot - 1), slotr1_pos[1]]
|
||||||
total_operation_time += t_pick
|
total_operation_time += t_pick
|
||||||
total_pick_counter += 1
|
total_pick_counter += 1
|
||||||
total_moving_time += max(axis_moving_time(cur_pos[0] - next_pos[0], 0),
|
|
||||||
axis_moving_time(cur_pos[1] - next_pos[1], 1))
|
move_time = max(axis_moving_time(cur_pos[0] - next_pos[0], 0),
|
||||||
|
axis_moving_time(cur_pos[1] - next_pos[1], 1))
|
||||||
|
if idx == 0:
|
||||||
|
total_round_time += move_time
|
||||||
|
else:
|
||||||
|
total_pickup_time += move_time
|
||||||
|
|
||||||
total_distance += max(abs(cur_pos[0] - next_pos[0]), abs(cur_pos[1] - next_pos[1]))
|
total_distance += max(abs(cur_pos[0] - next_pos[0]), abs(cur_pos[1] - next_pos[1]))
|
||||||
if slot != pick_slot[0]:
|
if slot != pick_slot[0]:
|
||||||
total_pick_distance += max(abs(cur_pos[0] - next_pos[0]), abs(cur_pos[1] - next_pos[1]))
|
total_pick_distance += max(abs(cur_pos[0] - next_pos[0]), abs(cur_pos[1] - next_pos[1]))
|
||||||
@ -522,8 +536,10 @@ def placement_time_estimate(component_data, pcb_data, component_result, cycle_re
|
|||||||
camera = component_data.loc[component_result[cycle_set][head]]['camera']
|
camera = component_data.loc[component_result[cycle_set][head]]['camera']
|
||||||
if camera == '固定相机':
|
if camera == '固定相机':
|
||||||
next_pos = [fix_camera_pos[0] - head * head_interval, fix_camera_pos[1]]
|
next_pos = [fix_camera_pos[0] - head * head_interval, fix_camera_pos[1]]
|
||||||
total_moving_time += max(axis_moving_time(cur_pos[0] - next_pos[0], 0),
|
move_time = max(axis_moving_time(cur_pos[0] - next_pos[0], 0),
|
||||||
axis_moving_time(cur_pos[1] - next_pos[1], 1))
|
axis_moving_time(cur_pos[1] - next_pos[1], 1))
|
||||||
|
total_round_time += move_time
|
||||||
|
|
||||||
total_distance += max(abs(cur_pos[0] - next_pos[0]), abs(cur_pos[1] - next_pos[1]))
|
total_distance += max(abs(cur_pos[0] - next_pos[0]), abs(cur_pos[1] - next_pos[1]))
|
||||||
total_operation_time += t_fix_camera_check
|
total_operation_time += t_fix_camera_check
|
||||||
cur_pos = next_pos
|
cur_pos = next_pos
|
||||||
@ -545,22 +561,26 @@ def placement_time_estimate(component_data, pcb_data, component_result, cycle_re
|
|||||||
# 考虑R轴预旋转,补偿同轴角度转动带来的额外贴装用时
|
# 考虑R轴预旋转,补偿同轴角度转动带来的额外贴装用时
|
||||||
total_operation_time += head_rotary_time(mount_angle[0]) # 补偿角度转动带来的额外贴装用时
|
total_operation_time += head_rotary_time(mount_angle[0]) # 补偿角度转动带来的额外贴装用时
|
||||||
total_operation_time += t_nozzle_put * nozzle_put_counter + t_nozzle_pick * nozzle_pick_counter
|
total_operation_time += t_nozzle_put * nozzle_put_counter + t_nozzle_pick * nozzle_pick_counter
|
||||||
for pos in mount_pos:
|
for idx, pos in enumerate(mount_pos):
|
||||||
total_operation_time += t_place
|
total_operation_time += t_place
|
||||||
total_moving_time += max(axis_moving_time(cur_pos[0] - pos[0], 0),
|
move_time = max(axis_moving_time(cur_pos[0] - pos[0], 0), axis_moving_time(cur_pos[1] - pos[1], 1))
|
||||||
axis_moving_time(cur_pos[1] - pos[1], 1))
|
if idx == 0:
|
||||||
|
total_round_time += move_time
|
||||||
|
else:
|
||||||
|
total_place_time += move_time
|
||||||
|
|
||||||
total_distance += max(abs(cur_pos[0] - pos[0]), abs(cur_pos[1] - pos[1]))
|
total_distance += max(abs(cur_pos[0] - pos[0]), abs(cur_pos[1] - pos[1]))
|
||||||
cur_pos = pos
|
cur_pos = pos
|
||||||
|
|
||||||
total_nozzle_change_counter += nozzle_put_counter + nozzle_pick_counter
|
total_nozzle_change_counter += nozzle_put_counter + nozzle_pick_counter
|
||||||
|
|
||||||
total_time = total_moving_time + total_operation_time
|
total_time = total_pickup_time + total_round_time + total_place_time + total_operation_time
|
||||||
minutes, seconds = int(total_time // 60), int(total_time) % 60
|
minutes, seconds = int(total_time // 60), int(total_time) % 60
|
||||||
millisecond = int((total_time - minutes * 60 - seconds) * 60)
|
millisecond = int((total_time - minutes * 60 - seconds) * 60)
|
||||||
|
|
||||||
if hinter:
|
if hinter:
|
||||||
optimization_assign_result(component_data, pcb_data, component_result, cycle_result, feeder_slot_result,
|
optimization_assign_result(component_data, pcb_data, component_result, cycle_result, feeder_slot_result,
|
||||||
nozzle_hinter=True, component_hinter=True, feeder_hinter=True)
|
nozzle_hinter=False, component_hinter=False, feeder_hinter=False)
|
||||||
|
|
||||||
print('-Cycle counter: {}'.format(sum(cycle_result)))
|
print('-Cycle counter: {}'.format(sum(cycle_result)))
|
||||||
print('-Nozzle change counter: {}'.format(total_nozzle_change_counter // 2))
|
print('-Nozzle change counter: {}'.format(total_nozzle_change_counter // 2))
|
||||||
@ -570,7 +590,9 @@ def placement_time_estimate(component_data, pcb_data, component_result, cycle_re
|
|||||||
print('-Expected picking tour length: {} mm'.format(total_pick_distance))
|
print('-Expected picking tour length: {} mm'.format(total_pick_distance))
|
||||||
print('-Expected total tour length: {} mm'.format(total_distance))
|
print('-Expected total tour length: {} mm'.format(total_distance))
|
||||||
|
|
||||||
print('-Expected total moving time: {} s'.format(total_moving_time))
|
print('-Expected total moving time: {} s with pick: {}, round: {}, place = {}'.format(
|
||||||
|
total_pickup_time + total_round_time + total_place_time, total_pickup_time, total_round_time,
|
||||||
|
total_place_time))
|
||||||
print('-Expected total operation time: {} s'.format(total_operation_time))
|
print('-Expected total operation time: {} s'.format(total_operation_time))
|
||||||
|
|
||||||
if minutes > 0:
|
if minutes > 0:
|
||||||
|
Reference in New Issue
Block a user