256 lines
12 KiB
Python
256 lines
12 KiB
Python
import copy
|
||
import math
|
||
|
||
import matplotlib.pyplot as plt
|
||
import pandas as pd
|
||
|
||
from base_optimizer.optimizer_aggregation import *
|
||
from base_optimizer.optimizer_scanbased import *
|
||
from base_optimizer.optimizer_celldivision import *
|
||
from base_optimizer.optimizer_hybridgenetic import *
|
||
from base_optimizer.optimizer_feederpriority import *
|
||
|
||
from dataloader import *
|
||
|
||
from optimizer_genetic import *
|
||
from optimizer_heuristic import *
|
||
|
||
|
||
def deviation(data):
|
||
assert len(data) > 0
|
||
average, variance = sum(data) / len(data), 0
|
||
for v in data:
|
||
variance += (v - average) ** 2
|
||
return variance / len(data)
|
||
|
||
|
||
def optimizer(pcb_data, component_data, assembly_line_optimizer, single_machine_optimizer):
|
||
# todo: 由于吸嘴更换更因素的存在,在处理PCB8数据时,遗传算法因在负载均衡过程中对这一因素进行了考虑,性能更优
|
||
assignment_result = assemblyline_optimizer_heuristic(pcb_data, component_data)
|
||
# assignment_result = assemblyline_optimizer_genetic(pcb_data, component_data)
|
||
print(assignment_result)
|
||
|
||
assignment_result_cpy = copy.deepcopy(assignment_result)
|
||
placement_points, placement_time = [], []
|
||
partial_pcb_data, partial_component_data = defaultdict(pd.DataFrame), defaultdict(pd.DataFrame)
|
||
for machine_index in range(max_machine_index):
|
||
partial_pcb_data[machine_index] = pd.DataFrame(columns=pcb_data.columns)
|
||
partial_component_data[machine_index] = component_data.copy(deep=True)
|
||
placement_points.append(sum(assignment_result[machine_index]))
|
||
|
||
assert sum(placement_points) == len(pcb_data)
|
||
|
||
# === averagely assign available feeder ===
|
||
for part_index, data in component_data.iterrows():
|
||
feeder_limit = data['feeder-limit']
|
||
feeder_points = [assignment_result[machine_index][part_index] for machine_index in range(max_machine_index)]
|
||
|
||
for machine_index in range(max_machine_index):
|
||
if feeder_points[machine_index] == 0:
|
||
continue
|
||
|
||
arg_feeder = max(math.floor(feeder_points[machine_index] / sum(feeder_points) * data['feeder-limit']), 1)
|
||
|
||
partial_component_data[machine_index].loc[part_index]['feeder-limit'] = arg_feeder
|
||
feeder_limit -= arg_feeder
|
||
|
||
for machine_index in range(max_machine_index):
|
||
if feeder_limit <= 0:
|
||
break
|
||
|
||
if feeder_points[machine_index] == 0:
|
||
continue
|
||
partial_component_data[machine_index].loc[part_index]['feeder-limit'] += 1
|
||
feeder_limit -= 1
|
||
|
||
for machine_index in range(max_machine_index):
|
||
if feeder_points[machine_index] > 0:
|
||
assert partial_component_data[machine_index].loc[part_index]['feeder-limit'] > 0
|
||
|
||
# === assign placements ===
|
||
component_machine_index = [0 for _ in range(len(component_data))]
|
||
for _, data in pcb_data.iterrows():
|
||
part_index = component_data[component_data['part'] == data['part']].index.tolist()[0]
|
||
while True:
|
||
machine_index = component_machine_index[part_index]
|
||
if assignment_result[machine_index][part_index] == 0:
|
||
component_machine_index[part_index] += 1
|
||
machine_index += 1
|
||
else:
|
||
break
|
||
assignment_result[machine_index][part_index] -= 1
|
||
partial_pcb_data[machine_index] = pd.concat([partial_pcb_data[machine_index], pd.DataFrame(data).T])
|
||
|
||
# === adjust the number of available feeders for single optimization separately ===
|
||
for machine_index, data in partial_pcb_data.items():
|
||
data = data.reset_index(drop=True)
|
||
if len(data) == 0:
|
||
continue
|
||
|
||
part_info = [] # part info list:(part index, part points, available feeder-num, upper feeder-num)
|
||
for part_index, cp_data in partial_component_data[machine_index].iterrows():
|
||
if assignment_result_cpy[machine_index][part_index]:
|
||
part_info.append(
|
||
[part_index, assignment_result_cpy[machine_index][part_index], 1, cp_data['feeder-limit']])
|
||
|
||
part_info = sorted(part_info, key=lambda x: x[1], reverse=True)
|
||
start_index, end_index = 0, min(max_head_index - 1, len(part_info) - 1)
|
||
while start_index < len(part_info):
|
||
assign_part_point, assign_part_index = [], []
|
||
for idx_ in range(start_index, end_index + 1):
|
||
for _ in range(part_info[idx_][2]):
|
||
assign_part_point.append(part_info[idx_][1] / part_info[idx_][2])
|
||
assign_part_index.append(idx_)
|
||
|
||
variance = deviation(assign_part_point)
|
||
while start_index != end_index:
|
||
part_info_index = assign_part_index[np.argmax(assign_part_point)]
|
||
|
||
if part_info[part_info_index][2] < part_info[part_info_index][3]: # 供料器数目上限的限制
|
||
part_info[part_info_index][2] += 1
|
||
end_index -= 1
|
||
|
||
new_assign_part_point, new_assign_part_index = [], []
|
||
for idx_ in range(start_index, end_index + 1):
|
||
for _ in range(part_info[idx_][2]):
|
||
new_assign_part_point.append(part_info[idx_][1] / part_info[idx_][2])
|
||
new_assign_part_index.append(idx_)
|
||
|
||
new_variance = deviation(new_assign_part_point)
|
||
if variance < new_variance:
|
||
part_info[part_info_index][2] -= 1
|
||
end_index += 1
|
||
break
|
||
|
||
variance = new_variance
|
||
assign_part_index, assign_part_point = new_assign_part_index, new_assign_part_point
|
||
else:
|
||
break
|
||
|
||
start_index = end_index + 1
|
||
end_index = min(start_index + max_head_index - 1, len(part_info) - 1)
|
||
|
||
# update available feeder number
|
||
max_avl_feeder = max(part_info, key=lambda x: x[2])[2]
|
||
for info in part_info:
|
||
partial_component_data[machine_index].loc[info[0]]['feeder-limit'] = math.ceil(info[2] / max_avl_feeder)
|
||
|
||
placement_time.append(base_optimizer(machine_index + 1, data, partial_component_data[machine_index],
|
||
feeder_data=pd.DataFrame(columns=['slot', 'part', 'arg']),
|
||
method=single_machine_optimizer, hinter=True))
|
||
|
||
average_time, standard_deviation_time = sum(placement_time) / max_machine_index, 0
|
||
for machine_index in range(max_machine_index):
|
||
print('assembly time for machine ' + str(machine_index + 1) + ': ' + str(
|
||
placement_time[machine_index]) + ' s, ' + 'total placements: ' + str(placement_points[machine_index]))
|
||
standard_deviation_time += pow(placement_time[machine_index] - average_time, 2)
|
||
standard_deviation_time /= max_machine_index
|
||
standard_deviation_time = math.sqrt(standard_deviation_time)
|
||
|
||
print('finial assembly time: ' + str(max(placement_time)) + 's, standard deviation: ' + str(standard_deviation_time))
|
||
|
||
|
||
# todo: 不同类型元件的组装时间差异
|
||
def base_optimizer(machine_index, pcb_data, component_data, feeder_data=None, method='', hinter=False):
|
||
|
||
if method == 'cell_division': # 基于元胞分裂的遗传算法
|
||
component_result, cycle_result, feeder_slot_result = optimizer_celldivision(pcb_data, component_data,
|
||
hinter=False)
|
||
placement_result, head_sequence = greedy_placement_route_generation(component_data, pcb_data, component_result,
|
||
cycle_result, feeder_slot_result)
|
||
elif method == 'feeder_scan': # 基于基座扫描的供料器优先算法
|
||
# 第1步:分配供料器位置
|
||
nozzle_pattern = feeder_allocate(component_data, pcb_data, feeder_data, figure=False)
|
||
# 第2步:扫描供料器基座,确定元件拾取的先后顺序
|
||
component_result, cycle_result, feeder_slot_result = feeder_base_scan(component_data, pcb_data, feeder_data,
|
||
nozzle_pattern)
|
||
|
||
# 第3步:贴装路径规划
|
||
placement_result, head_sequence = greedy_placement_route_generation(component_data, pcb_data, component_result,
|
||
cycle_result, feeder_slot_result)
|
||
# placement_result, head_sequence = beam_search_for_route_generation(component_data, pcb_data, component_result,
|
||
# cycle_result, feeder_slot_result)
|
||
|
||
elif method == 'hybrid_genetic': # 基于拾取组的混合遗传算法
|
||
component_result, cycle_result, feeder_slot_result, placement_result, head_sequence = optimizer_hybrid_genetic(
|
||
pcb_data, component_data, hinter=False)
|
||
|
||
elif method == 'aggregation': # 基于batch-level的整数规划 + 启发式算法
|
||
component_result, cycle_result, feeder_slot_result, placement_result, head_sequence = optimizer_aggregation(
|
||
component_data, pcb_data)
|
||
elif method == 'genetic_scanning':
|
||
component_result, cycle_result, feeder_slot_result, placement_result, head_sequence = optimizer_genetic_scanning(
|
||
component_data, pcb_data, hinter=False)
|
||
else:
|
||
raise 'method is not existed'
|
||
|
||
if hinter:
|
||
optimization_assign_result(component_data, pcb_data, component_result, cycle_result, feeder_slot_result,
|
||
nozzle_hinter=True, component_hinter=False, feeder_hinter=False)
|
||
|
||
print('----- Placement machine ' + str(machine_index) + ' ----- ')
|
||
print('-Cycle counter: {}'.format(sum(cycle_result)))
|
||
|
||
total_nozzle_change_counter, total_pick_counter = 0, 0
|
||
total_pick_movement = 0
|
||
assigned_nozzle = ['' if idx == -1 else component_data.loc[idx]['nz'] for idx in component_result[0]]
|
||
|
||
for cycle in range(len(cycle_result)):
|
||
pick_slot = set()
|
||
for head in range(max_head_index):
|
||
if (idx := component_result[cycle][head]) == -1:
|
||
continue
|
||
|
||
nozzle = component_data.loc[idx]['nz']
|
||
if nozzle != assigned_nozzle[head]:
|
||
if assigned_nozzle[head] != '':
|
||
total_nozzle_change_counter += 1
|
||
assigned_nozzle[head] = nozzle
|
||
|
||
pick_slot.add(feeder_slot_result[cycle][head] - head * interval_ratio)
|
||
total_pick_counter += len(pick_slot) * cycle_result[cycle]
|
||
|
||
pick_slot = list(pick_slot)
|
||
pick_slot.sort()
|
||
for idx in range(len(pick_slot) - 1):
|
||
total_pick_movement += abs(pick_slot[idx+1] - pick_slot[idx])
|
||
|
||
print('-Nozzle change counter: {}'.format(total_nozzle_change_counter))
|
||
print('-Pick operation counter: {}'.format(total_pick_counter))
|
||
print('-Pick movement: {}'.format(total_pick_movement))
|
||
print('------------------------------ ')
|
||
|
||
# 估算贴装用时
|
||
return placement_time_estimate(component_data, pcb_data, component_result, cycle_result, feeder_slot_result,
|
||
placement_result, head_sequence, hinter=False)
|
||
|
||
|
||
@timer_wrapper
|
||
def main():
|
||
# warnings.simplefilter('ignore')
|
||
# 参数解析
|
||
parser = argparse.ArgumentParser(description='assembly line optimizer implementation')
|
||
parser.add_argument('--filename', default='PCB.txt', type=str, help='load pcb data')
|
||
parser.add_argument('--auto_register', default=1, type=int, help='register the component according the pcb data')
|
||
parser.add_argument('--base_optimizer', default='feeder_scan', type=str, help='base optimizer for single machine')
|
||
parser.add_argument('--assembly_optimizer', default='heuristic', type=str, help='optimizer for PCB Assembly Line')
|
||
parser.add_argument('--feeder_limit', default=3, type=int,
|
||
help='the upper feeder limit for each type of component')
|
||
params = parser.parse_args()
|
||
|
||
# 结果输出显示所有行和列
|
||
pd.set_option('display.max_columns', None)
|
||
pd.set_option('display.max_rows', None)
|
||
|
||
# 加载PCB数据
|
||
pcb_data, component_data, _ = load_data(params.filename, default_feeder_limit=params.feeder_limit,
|
||
cp_auto_register=params.auto_register) # 加载PCB数据
|
||
|
||
optimizer(pcb_data, component_data, params.assembly_optimizer, params.base_optimizer)
|
||
|
||
|
||
if __name__ == '__main__':
|
||
main()
|
||
|
||
|