增加reconfig方法

This commit is contained in:
2023-09-13 20:29:09 +08:00
parent afde7a853e
commit 800057e000
5 changed files with 368 additions and 12 deletions

View File

@ -19,7 +19,7 @@ from tqdm import tqdm
max_machine_index = 3 max_machine_index = 3
# 时间参数 # 时间参数
T_pp, T_tr, T_nc = 2, 5, 25 T_pp, T_tr, T_nc, T_pl = 2, 5, 25, 0
# 机器参数 # 机器参数
max_head_index, max_slot_index = 6, 120 max_head_index, max_slot_index = 6, 120
@ -56,6 +56,7 @@ t_nozzle_put, t_nozzle_pick = 0.9, 0.75 # 装卸吸嘴用时
t_nozzle_change = t_nozzle_put + t_nozzle_pick t_nozzle_change = t_nozzle_put + t_nozzle_pick
t_fix_camera_check = 0.12 # 固定相机检测时间 t_fix_camera_check = 0.12 # 固定相机检测时间
def axis_moving_time(distance, axis=0): def axis_moving_time(distance, axis=0):
distance = abs(distance) * 1e-3 distance = abs(distance) * 1e-3
Lamax = x_max_velocity ** 2 / x_max_acceleration if axis == 0 else y_max_velocity ** 2 / y_max_acceleration Lamax = x_max_velocity ** 2 / x_max_acceleration if axis == 0 else y_max_velocity ** 2 / y_max_acceleration

View File

@ -12,6 +12,7 @@ from dataloader import *
from optimizer_genetic import * from optimizer_genetic import *
from optimizer_heuristic import * from optimizer_heuristic import *
from optimizer_reconfiguration import *
def deviation(data): def deviation(data):
@ -25,8 +26,8 @@ def deviation(data):
def optimizer(pcb_data, component_data, assembly_line_optimizer, single_machine_optimizer): def optimizer(pcb_data, component_data, assembly_line_optimizer, single_machine_optimizer):
# todo: 由于吸嘴更换更因素的存在在处理PCB8数据时遗传算法因在负载均衡过程中对这一因素进行了考虑性能更优 # todo: 由于吸嘴更换更因素的存在在处理PCB8数据时遗传算法因在负载均衡过程中对这一因素进行了考虑性能更优
# assignment_result = assemblyline_optimizer_heuristic(pcb_data, component_data) # assignment_result = assemblyline_optimizer_heuristic(pcb_data, component_data)
assignment_result = assemblyline_optimizer_genetic(pcb_data, component_data) # assignment_result = assemblyline_optimizer_genetic(pcb_data, component_data)
print(assignment_result) assignment_result = reconfiguration_optimizer(pcb_data, component_data)
assignment_result_cpy = copy.deepcopy(assignment_result) assignment_result_cpy = copy.deepcopy(assignment_result)
placement_points, placement_time = [], [] placement_points, placement_time = [], []
@ -232,7 +233,7 @@ def main():
parser.add_argument('--auto_register', default=1, type=int, help='register the component according the pcb data') parser.add_argument('--auto_register', default=1, type=int, help='register the component according the pcb data')
parser.add_argument('--base_optimizer', default='feeder_scan', type=str, help='base optimizer for single machine') parser.add_argument('--base_optimizer', default='feeder_scan', type=str, help='base optimizer for single machine')
parser.add_argument('--assembly_optimizer', default='heuristic', type=str, help='optimizer for PCB Assembly Line') parser.add_argument('--assembly_optimizer', default='heuristic', type=str, help='optimizer for PCB Assembly Line')
parser.add_argument('--feeder_limit', default=1, type=int, parser.add_argument('--feeder_limit', default=2, type=int,
help='the upper feeder limit for each type of component') help='the upper feeder limit for each type of component')
params = parser.parse_args() params = parser.parse_args()

View File

@ -249,7 +249,7 @@ def assemblyline_optimizer_genetic(pcb_data, component_data):
# population size: 200 # population size: 200
# the number of generation: 500 # the number of generation: 500
crossover_rate, mutation_rate = 0.8, 0.1 crossover_rate, mutation_rate = 0.8, 0.1
population_size, n_generations = 500, 500 population_size, n_generations = 200, 500
# the number of placement points, the number of available feeders, and nozzle type of component respectively # the number of placement points, the number of available feeders, and nozzle type of component respectively
component_points, component_feeders, component_nozzle = defaultdict(int), defaultdict(int), defaultdict(str) component_points, component_feeders, component_nozzle = defaultdict(int), defaultdict(int), defaultdict(str)
@ -264,7 +264,6 @@ def assemblyline_optimizer_genetic(pcb_data, component_data):
component_points = sorted(component_points.items(), key=lambda x: x[0]) # 决定染色体排列顺序 component_points = sorted(component_points.items(), key=lambda x: x[0]) # 决定染色体排列顺序
# population initialization # population initialization
best_popval = []
population = selective_initialization(component_points, component_feeders, population_size) population = selective_initialization(component_points, component_feeders, population_size)
with tqdm(total=n_generations) as pbar: with tqdm(total=n_generations) as pbar:
pbar.set_description('genetic algorithm process for PCB assembly line balance') pbar.set_description('genetic algorithm process for PCB assembly line balance')
@ -277,7 +276,6 @@ def assemblyline_optimizer_genetic(pcb_data, component_data):
val, assigned_points = cal_individual_val(component_points, component_nozzle, individual) val, assigned_points = cal_individual_val(component_points, component_nozzle, individual)
pop_val.append(max(val)) pop_val.append(max(val))
best_popval.append(min(pop_val))
select_index = get_top_k_value(pop_val, population_size - len(new_population), reverse=False) select_index = get_top_k_value(pop_val, population_size - len(new_population), reverse=False)
population = [population[idx] for idx in select_index] population = [population[idx] for idx in select_index]
pop_val = [pop_val[idx] for idx in select_index] pop_val = [pop_val[idx] for idx in select_index]

View File

@ -4,10 +4,9 @@ import numpy as np
from base_optimizer.optimizer_common import * from base_optimizer.optimizer_common import *
# TODO: nozzle tool available restriction
# TODO: consider with the PCB placement topology # TODO: consider with the PCB placement topology
def assembly_time_estimator(component_points, component_feeders, component_nozzle, assignment_points): def assembly_time_estimator(assignment_points, component_feeders, component_nozzle):
# todo: how to deal with nozzle change
n_cycle, n_nz_change, n_gang_pick = 0, 0, 0
nozzle_heads, nozzle_points = defaultdict(int), defaultdict(int) nozzle_heads, nozzle_points = defaultdict(int), defaultdict(int)
for idx, points in enumerate(assignment_points): for idx, points in enumerate(assignment_points):
@ -138,8 +137,6 @@ def assemblyline_optimizer_heuristic(pcb_data, component_data):
assignment_result[machine_index][part_index] += 1 assignment_result[machine_index][part_index] += 1
total_points -= 1 total_points -= 1
# todo: implementation
# second step: estimate the assembly time for each machine # second step: estimate the assembly time for each machine
# third step: adjust the assignment results to reduce maximal assembly time among all machines # third step: adjust the assignment results to reduce maximal assembly time among all machines

View File

@ -0,0 +1,359 @@
import copy
import math
import random
import numpy as np
from base_optimizer.optimizer_common import *
def objective_value_calculate(component_assignment, component_nozzle, task_block_weight):
machine_assembly_time = []
for machine_index in range(max_machine_index):
task_block_number, total_point_number = 0, sum(component_assignment[machine_index])
nozzle_points, nozzle_heads = defaultdict(int), defaultdict(int)
for part, points in enumerate(component_assignment[machine_index]):
nozzle = component_nozzle[part]
nozzle_points[nozzle] += points
nozzle_heads[nozzle] = 1
remaining_head = max_head_index - len(nozzle_heads)
nozzle_fraction = []
for nozzle, points in nozzle_points.items():
val = remaining_head * points / total_point_number
nozzle_heads[nozzle] += math.floor(val)
nozzle_fraction.append([nozzle, val - math.floor(val)])
remaining_head = max_head_index - sum(nozzle_heads.values())
sorted(nozzle_fraction, key=lambda x: x[1])
nozzle_fraction_index = 0
while remaining_head > 0:
nozzle_heads[nozzle_fraction[nozzle_fraction_index][0]] += 1
remaining_head -= 1
for nozzle, heads_number in nozzle_heads.items():
task_block_number = max(task_block_weight, math.ceil(nozzle_points[nozzle] / heads_number))
machine_assembly_time.append(
(t_pick + t_place) * sum(component_assignment[machine_index]) + task_block_number * task_block_weight)
return max(machine_assembly_time)
def random_component_assignment(component_points, component_nozzle, component_feeders, task_block_weight):
component_points_cpy = copy.deepcopy(component_points)
component_number = len(component_points_cpy)
assignment_result = [[0 for _ in range(component_number)] for _ in range(max_machine_index)]
# == the set of feasible component type for each nozzle type
nozzle_part_list = defaultdict(list)
for index, nozzle in enumerate(component_nozzle):
nozzle_part_list[nozzle].append(index)
# === ensure every nozzle types ===
selected_part = []
for part_list in nozzle_part_list.values():
part = random.sample(part_list, 1)[0]
machine_index = random.randint(0, max_machine_index - 1)
assignment_result[machine_index][part] += 1
component_points_cpy[part] -= 1
selected_part.append(part)
# === assign one placement which has not been selected ===
for part in range(component_number):
if part in selected_part:
continue
assignment_result[random.randint(0, max_machine_index - 1)][part] += 1
component_points_cpy[part] -= 1
machine_assign = list(range(max_machine_index))
random.shuffle(machine_assign)
finished_assign_counter = 0
while finished_assign_counter < component_number:
# todo: feeder limit restriction
for machine_index in machine_assign:
part = random.randint(0, component_number - 1)
feeder_counter = 0
for idx in range(max_machine_index):
if assignment_result[idx][part] > 0 or idx == machine_index:
feeder_counter += 1
if component_points_cpy[part] == 0 or feeder_counter > component_feeders[part]:
continue
points = random.randint(1, component_points_cpy[part])
assignment_result[machine_index][part] += points
component_points_cpy[part] -= points
if component_points_cpy[part] == 0:
finished_assign_counter += 1
assert sum(component_points_cpy) == 0
return objective_value_calculate(assignment_result, component_nozzle, task_block_weight), assignment_result
def greedy_component_assignment(component_points, component_nozzle, component_feeders, task_block_weight):
pass # 不清楚原文想说什么
def local_search_component_assignment(component_points, component_nozzle, component_feeders, task_block_weight):
# maximum number of iterations : 5000
# maximum number of unsuccessful iterations: 50
component_number = len(component_points)
iteration_counter, unsuccessful_iteration_counter = 5000, 50
optimal_val, optimal_assignment = random_component_assignment(component_points, component_nozzle, component_feeders,
task_block_weight)
for _ in range(iteration_counter):
machine_index = random.randint(0, max_machine_index - 1)
if sum(optimal_assignment[machine_index]) == 0:
continue
part_set = []
for component_index in range(component_number):
if optimal_assignment[machine_index][component_index] != 0:
part_set.append(component_index)
component_index = random.sample(part_set, 1)[0]
r = random.randint(1, optimal_assignment[machine_index][component_index])
assignment = copy.deepcopy(optimal_assignment)
cyclic_counter = 0
swap_machine_index = None
while cyclic_counter <= 2 * machine_index:
cyclic_counter += 1
swap_machine_index = random.randint(0, max_machine_index - 1)
feeder_available = 0
for machine in range(max_machine_index):
if optimal_assignment[machine][component_index] or machine == swap_machine_index:
feeder_available += 1
if feeder_available <= component_feeders[component_index] and swap_machine_index != machine_index:
break
assert swap_machine_index is not None
assignment[machine_index][component_index] -= r
assignment[swap_machine_index][component_index] += r
val = objective_value_calculate(assignment, component_nozzle, task_block_weight)
if val < optimal_val:
optimal_assignment, optimal_val = assignment, val
unsuccessful_iteration_counter = 50
else:
unsuccessful_iteration_counter -= 1
if unsuccessful_iteration_counter <= 0:
break
return optimal_val, optimal_assignment
def reconfig_crossover_operation(component_points, component_feeders, parent1, parent2):
offspring1, offspring2 = copy.deepcopy(parent1), copy.deepcopy(parent2)
component_number = len(component_points)
# === crossover ===
mask_bit = []
for _ in range(max_machine_index):
mask_bit.append(random.randint(0, 1))
if sum(mask_bit) == 0 or sum(mask_bit) == max_machine_index:
return offspring1, offspring2
for machine_index in range(max_machine_index):
if mask_bit:
offspring1[machine_index] = copy.deepcopy(parent1[machine_index])
offspring2[machine_index] = copy.deepcopy(parent2[machine_index])
else:
offspring1[machine_index] = copy.deepcopy(parent2[machine_index])
offspring2[machine_index] = copy.deepcopy(parent1[machine_index])
# === balancing ===
# equally to reach the correct number
for component_index in range(component_number):
for offspring in [offspring1, offspring2]:
additional_points = sum([offspring[mt][component_index] for mt in range(max_machine_index)]) - \
component_points[component_index]
if additional_points > 0:
# if a component type has more placements, decrease the assigned values on every head equally keeping
# the proportion of the number of placement among the heads
points_list = []
for machine_index in range(max_machine_index):
points = math.floor(
additional_points * offspring[machine_index][component_index] / component_points[component_index])
points_list.append(points)
offspring[machine_index][component_index] -= points
additional_points -= sum(points_list)
for machine_index in range(max_machine_index):
if additional_points == 0:
break
if offspring[machine_index][component_index] == 0:
continue
offspring[machine_index][component_index] -= 1
additional_points += 1
elif additional_points < 0:
# otherwise, increase the assigned nonzero values equally
machine_set = []
for machine_index in range(max_machine_index):
if offspring[machine_index][component_index] == 0:
continue
machine_set.append(machine_index)
points = -math.ceil(additional_points / len(machine_set))
for machine_index in machine_set:
offspring[machine_index][component_index] += points
additional_points += points
for machine_index in machine_set:
if additional_points == 0:
break
offspring[machine_index][component_index] += 1
additional_points -= 1
for part in range(component_number):
pt = 0
for mt in range(max_machine_index):
pt+= offspring1[mt][part]
if pt!=component_points[part]:
print('')
for part in range(component_number):
pt = 0
for mt in range(max_machine_index):
pt+= offspring2[mt][part]
if pt!=component_points[part]:
print('')
return offspring1, offspring2
def reconfig_mutation_operation(component_feeders, parent):
offspring = copy.deepcopy(parent)
swap_direction = random.randint(0, 1)
if swap_direction:
swap_machine1, swap_machine2 = random.sample(list(range(max_machine_index)), 2)
else:
swap_machine2, swap_machine1 = random.sample(list(range(max_machine_index)), 2)
component_list = []
for component_index, points in enumerate(offspring[swap_machine1]):
if points:
component_list.append(component_index)
swap_component_index = random.sample(component_list, 1)[0]
swap_points = random.randint(1, offspring[swap_machine1][swap_component_index])
feeder_counter = 0
for machine_index in range(max_machine_index):
if offspring[swap_machine1][swap_component_index] < swap_points or machine_index == swap_machine2:
feeder_counter += 1
if feeder_counter > component_feeders[swap_component_index]:
return offspring
offspring[swap_machine1][swap_component_index] -= swap_points
offspring[swap_machine2][swap_component_index] += swap_points
return offspring
def evolutionary_component_assignment(component_points, component_nozzle, component_feeders, task_block_weight):
# population size: 10
# probability of the mutation: 0.1
# probability of the crossover: 0.8
# number of generation: 100
population_size = 10
generation_number = 100
mutation_rate, crossover_rate = 0.1, 0.8
population = []
for _ in range(population_size):
population.append(
random_component_assignment(component_points, component_nozzle, component_feeders, task_block_weight)[1])
with tqdm(total=generation_number) as pbar:
pbar.set_description('evolutionary algorithm process for PCB assembly line balance')
new_population = []
for _ in range(generation_number):
# calculate fitness value
pop_val = []
for individual in population:
pop_val.append(objective_value_calculate(individual, component_nozzle, task_block_weight))
select_index = get_top_k_value(pop_val, population_size - len(new_population), reverse=False)
population = [population[idx] for idx in select_index]
pop_val = [pop_val[idx] for idx in select_index]
population += new_population
for individual in new_population:
pop_val.append(objective_value_calculate(individual, component_nozzle, task_block_weight))
# min-max convert
max_val = max(pop_val)
pop_val_sel = list(map(lambda v: max_val - v, pop_val))
sum_pop_val = sum(pop_val_sel) + 1e-10
pop_val_sel = [v / sum_pop_val + 1e-3 for v in pop_val_sel]
# crossover and mutation
new_population = []
for pop in range(population_size):
if pop % 2 == 0 and np.random.random() < crossover_rate:
index1 = roulette_wheel_selection(pop_val_sel)
while True:
index2 = roulette_wheel_selection(pop_val_sel)
if index1 != index2:
break
offspring1, offspring2 = reconfig_crossover_operation(component_points, component_feeders,
population[index1], population[index2])
if np.random.random() < mutation_rate:
offspring1 = reconfig_mutation_operation(component_feeders, offspring1)
if np.random.random() < mutation_rate:
offspring2 = reconfig_mutation_operation(component_feeders, offspring2)
new_population.append(offspring1)
new_population.append(offspring2)
pbar.update(1)
return min(pop_val), population[np.argmin(pop_val)]
def reconfiguration_optimizer(pcb_data, component_data):
# === data preparation ===
component_number = len(component_data)
component_points = [0 for _ in range(component_number)]
component_nozzle = [0 for _ in range(component_number)]
component_feeders = [0 for _ in range(component_number)]
component_part = [0 for _ in range(component_number)]
for _, data in pcb_data.iterrows():
part_index = component_data[component_data['part'] == data['part']].index.tolist()[0]
nozzle = component_data.loc[part_index]['nz']
component_points[part_index] += 1
component_nozzle[part_index] = nozzle
component_part[part_index] = data['part']
component_feeders[part_index] = component_data.loc[part_index]['feeder-limit']
# === assignment of heads to modules is omitted ===
optimal_assignment, optimal_val = [], None
task_block_weight = 5 # element from list [0, 1, 2, 5, 10]
# === assignment of components to heads
for i in range(4):
if i == 0:
val, assignment = random_component_assignment(component_points, component_nozzle, component_feeders,
task_block_weight)
elif i == 1:
continue
elif i == 2:
val, assignment = local_search_component_assignment(component_points, component_nozzle,
component_feeders, task_block_weight)
else:
val, assignment = evolutionary_component_assignment(component_points, component_nozzle,
component_feeders, task_block_weight)
if optimal_val is None or val < optimal_val:
optimal_val, optimal_assignment = val, assignment.copy()
if optimal_val is None:
raise Exception('no feasible solution! ')
return optimal_assignment