Files
smt-optimizer/optimizer_reconfiguration.py
2023-09-14 14:52:58 +08:00

360 lines
15 KiB
Python

import copy
import math
import random
import numpy as np
from base_optimizer.optimizer_common import *
def objective_value_calculate(component_assignment, component_nozzle, task_block_weight):
machine_assembly_time = []
for machine_index in range(max_machine_index):
task_block_number, total_point_number = 0, sum(component_assignment[machine_index])
nozzle_points, nozzle_heads = defaultdict(int), defaultdict(int)
for part, points in enumerate(component_assignment[machine_index]):
nozzle = component_nozzle[part]
nozzle_points[nozzle] += points
nozzle_heads[nozzle] = 1
remaining_head = max_head_index - len(nozzle_heads)
nozzle_fraction = []
for nozzle, points in nozzle_points.items():
val = remaining_head * points / total_point_number
nozzle_heads[nozzle] += math.floor(val)
nozzle_fraction.append([nozzle, val - math.floor(val)])
remaining_head = max_head_index - sum(nozzle_heads.values())
sorted(nozzle_fraction, key=lambda x: x[1])
nozzle_fraction_index = 0
while remaining_head > 0:
nozzle_heads[nozzle_fraction[nozzle_fraction_index][0]] += 1
remaining_head -= 1
for nozzle, heads_number in nozzle_heads.items():
task_block_number = max(task_block_weight, math.ceil(nozzle_points[nozzle] / heads_number))
machine_assembly_time.append(
(t_pick + t_place) * sum(component_assignment[machine_index]) + task_block_number * task_block_weight)
return max(machine_assembly_time)
def random_component_assignment(component_points, component_nozzle, component_feeders, task_block_weight):
component_points_cpy = copy.deepcopy(component_points)
component_number = len(component_points_cpy)
assignment_result = [[0 for _ in range(component_number)] for _ in range(max_machine_index)]
# == the set of feasible component type for each nozzle type
nozzle_part_list = defaultdict(list)
for index, nozzle in enumerate(component_nozzle):
nozzle_part_list[nozzle].append(index)
# === ensure every nozzle types ===
selected_part = []
for part_list in nozzle_part_list.values():
part = random.sample(part_list, 1)[0]
machine_index = random.randint(0, max_machine_index - 1)
assignment_result[machine_index][part] += 1
component_points_cpy[part] -= 1
selected_part.append(part)
# === assign one placement which has not been selected ===
for part in range(component_number):
if part in selected_part:
continue
assignment_result[random.randint(0, max_machine_index - 1)][part] += 1
component_points_cpy[part] -= 1
machine_assign = list(range(max_machine_index))
random.shuffle(machine_assign)
finished_assign_counter = 0
while finished_assign_counter < component_number:
# todo: feeder limit restriction
for machine_index in machine_assign:
part = random.randint(0, component_number - 1)
feeder_counter = 0
for idx in range(max_machine_index):
if assignment_result[idx][part] > 0 or idx == machine_index:
feeder_counter += 1
if component_points_cpy[part] == 0 or feeder_counter > component_feeders[part]:
continue
points = random.randint(1, component_points_cpy[part])
assignment_result[machine_index][part] += points
component_points_cpy[part] -= points
if component_points_cpy[part] == 0:
finished_assign_counter += 1
assert sum(component_points_cpy) == 0
return objective_value_calculate(assignment_result, component_nozzle, task_block_weight), assignment_result
def greedy_component_assignment(component_points, component_nozzle, component_feeders, task_block_weight):
pass # 不清楚原文想说什么
def local_search_component_assignment(component_points, component_nozzle, component_feeders, task_block_weight):
# maximum number of iterations : 5000
# maximum number of unsuccessful iterations: 50
component_number = len(component_points)
iteration_counter, unsuccessful_iteration_counter = 5000, 50
optimal_val, optimal_assignment = random_component_assignment(component_points, component_nozzle, component_feeders,
task_block_weight)
for _ in range(iteration_counter):
machine_index = random.randint(0, max_machine_index - 1)
if sum(optimal_assignment[machine_index]) == 0:
continue
part_set = []
for component_index in range(component_number):
if optimal_assignment[machine_index][component_index] != 0:
part_set.append(component_index)
component_index = random.sample(part_set, 1)[0]
r = random.randint(1, optimal_assignment[machine_index][component_index])
assignment = copy.deepcopy(optimal_assignment)
cyclic_counter = 0
swap_machine_index = None
while cyclic_counter <= 2 * machine_index:
cyclic_counter += 1
swap_machine_index = random.randint(0, max_machine_index - 1)
feeder_available = 0
for machine in range(max_machine_index):
if optimal_assignment[machine][component_index] or machine == swap_machine_index:
feeder_available += 1
if feeder_available <= component_feeders[component_index] and swap_machine_index != machine_index:
break
assert swap_machine_index is not None
assignment[machine_index][component_index] -= r
assignment[swap_machine_index][component_index] += r
val = objective_value_calculate(assignment, component_nozzle, task_block_weight)
if val < optimal_val:
optimal_assignment, optimal_val = assignment, val
unsuccessful_iteration_counter = 50
else:
unsuccessful_iteration_counter -= 1
if unsuccessful_iteration_counter <= 0:
break
return optimal_val, optimal_assignment
def reconfig_crossover_operation(component_points, component_feeders, parent1, parent2):
offspring1, offspring2 = copy.deepcopy(parent1), copy.deepcopy(parent2)
component_number = len(component_points)
# === crossover ===
mask_bit = []
for _ in range(max_machine_index):
mask_bit.append(random.randint(0, 1))
if sum(mask_bit) == 0 or sum(mask_bit) == max_machine_index:
return offspring1, offspring2
for machine_index in range(max_machine_index):
if mask_bit:
offspring1[machine_index] = copy.deepcopy(parent1[machine_index])
offspring2[machine_index] = copy.deepcopy(parent2[machine_index])
else:
offspring1[machine_index] = copy.deepcopy(parent2[machine_index])
offspring2[machine_index] = copy.deepcopy(parent1[machine_index])
# === balancing ===
# equally to reach the correct number
for component_index in range(component_number):
for offspring in [offspring1, offspring2]:
additional_points = sum([offspring[mt][component_index] for mt in range(max_machine_index)]) - \
component_points[component_index]
if additional_points > 0:
# if a component type has more placements, decrease the assigned values on every head equally keeping
# the proportion of the number of placement among the heads
points_list = []
for machine_index in range(max_machine_index):
points = math.floor(
additional_points * offspring[machine_index][component_index] / component_points[component_index])
points_list.append(points)
offspring[machine_index][component_index] -= points
additional_points -= sum(points_list)
for machine_index in range(max_machine_index):
if additional_points == 0:
break
if offspring[machine_index][component_index] == 0:
continue
offspring[machine_index][component_index] -= 1
additional_points += 1
elif additional_points < 0:
# otherwise, increase the assigned nonzero values equally
machine_set = []
for machine_index in range(max_machine_index):
if offspring[machine_index][component_index] == 0:
continue
machine_set.append(machine_index)
points = -math.ceil(additional_points / len(machine_set))
for machine_index in machine_set:
offspring[machine_index][component_index] += points
additional_points += points
for machine_index in machine_set:
if additional_points == 0:
break
offspring[machine_index][component_index] += 1
additional_points -= 1
for part in range(component_number):
pt = 0
for mt in range(max_machine_index):
pt+= offspring1[mt][part]
if pt!=component_points[part]:
print('')
for part in range(component_number):
pt = 0
for mt in range(max_machine_index):
pt+= offspring2[mt][part]
if pt!=component_points[part]:
print('')
return offspring1, offspring2
def reconfig_mutation_operation(component_feeders, parent):
offspring = copy.deepcopy(parent)
swap_direction = random.randint(0, 1)
if swap_direction:
swap_machine1, swap_machine2 = random.sample(list(range(max_machine_index)), 2)
else:
swap_machine2, swap_machine1 = random.sample(list(range(max_machine_index)), 2)
component_list = []
for component_index, points in enumerate(offspring[swap_machine1]):
if points:
component_list.append(component_index)
swap_component_index = random.sample(component_list, 1)[0]
swap_points = random.randint(1, offspring[swap_machine1][swap_component_index])
feeder_counter = 0
for machine_index in range(max_machine_index):
if offspring[swap_machine1][swap_component_index] < swap_points or machine_index == swap_machine2:
feeder_counter += 1
if feeder_counter > component_feeders[swap_component_index]:
return offspring
offspring[swap_machine1][swap_component_index] -= swap_points
offspring[swap_machine2][swap_component_index] += swap_points
return offspring
def evolutionary_component_assignment(component_points, component_nozzle, component_feeders, task_block_weight):
# population size: 10
# probability of the mutation: 0.1
# probability of the crossover: 0.8
# number of generation: 100
population_size = 10
generation_number = 100
mutation_rate, crossover_rate = 0.1, 0.8
population = []
for _ in range(population_size):
population.append(
random_component_assignment(component_points, component_nozzle, component_feeders, task_block_weight)[1])
with tqdm(total=generation_number) as pbar:
pbar.set_description('evolutionary algorithm process for PCB assembly line balance')
new_population = []
for _ in range(generation_number):
# calculate fitness value
pop_val = []
for individual in population:
pop_val.append(objective_value_calculate(individual, component_nozzle, task_block_weight))
select_index = get_top_k_value(pop_val, population_size - len(new_population), reverse=False)
population = [population[idx] for idx in select_index]
pop_val = [pop_val[idx] for idx in select_index]
population += new_population
for individual in new_population:
pop_val.append(objective_value_calculate(individual, component_nozzle, task_block_weight))
# min-max convert
max_val = max(pop_val)
pop_val_sel = list(map(lambda v: max_val - v, pop_val))
sum_pop_val = sum(pop_val_sel) + 1e-10
pop_val_sel = [v / sum_pop_val + 1e-3 for v in pop_val_sel]
# crossover and mutation
new_population = []
for pop in range(population_size):
if pop % 2 == 0 and np.random.random() < crossover_rate:
index1 = roulette_wheel_selection(pop_val_sel)
while True:
index2 = roulette_wheel_selection(pop_val_sel)
if index1 != index2:
break
offspring1, offspring2 = reconfig_crossover_operation(component_points, component_feeders,
population[index1], population[index2])
if np.random.random() < mutation_rate:
offspring1 = reconfig_mutation_operation(component_feeders, offspring1)
if np.random.random() < mutation_rate:
offspring2 = reconfig_mutation_operation(component_feeders, offspring2)
new_population.append(offspring1)
new_population.append(offspring2)
pbar.update(1)
return min(pop_val), population[np.argmin(pop_val)]
def reconfiguration_optimizer(pcb_data, component_data):
# === data preparation ===
component_number = len(component_data)
component_points = [0 for _ in range(component_number)]
component_nozzle = [0 for _ in range(component_number)]
component_feeders = [0 for _ in range(component_number)]
component_part = [0 for _ in range(component_number)]
for _, data in pcb_data.iterrows():
part_index = component_data[component_data['part'] == data['part']].index.tolist()[0]
nozzle = component_data.loc[part_index]['nz']
component_points[part_index] += 1
component_nozzle[part_index] = nozzle
component_part[part_index] = data['part']
component_feeders[part_index] = component_data.loc[part_index]['feeder-limit']
# === assignment of heads to modules is omitted ===
optimal_assignment, optimal_val = [], None
task_block_weight = 5 # element from list [0, 1, 2, 5, 10]
# === assignment of components to heads
for i in range(4):
if i == 0:
val, assignment = random_component_assignment(component_points, component_nozzle, component_feeders,
task_block_weight)
elif i == 1:
continue
elif i == 2:
val, assignment = local_search_component_assignment(component_points, component_nozzle,
component_feeders, task_block_weight)
else:
val, assignment = evolutionary_component_assignment(component_points, component_nozzle,
component_feeders, task_block_weight)
if optimal_val is None or val < optimal_val:
optimal_val, optimal_assignment = val, assignment.copy()
if optimal_val is None:
raise Exception('no feasible solution! ')
return optimal_assignment