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Abstract—Printed circuit board assembly line scheduling
(PCBALS) is a difficult task in the electronic industry for
assembly lines using surface mounters, which is critical for
production efficiency. This is a special type of line optimization
problem that uses different allocation techniques, resulting in
wide differences in assembly times between machines. This
article proposes a hyper-heuristic optimizer embedded with
a multi-feature fusion ensemble estimator (HHO-MFFEE) for
PCBALS using linear-aligned-heads surface mounters. The
objective and constraints of the problem are discussed, and
a min-max integer model for small-scale problems is built.
At the hyper-heuristic low level, seven data- and target-
driven heuristics are presented for allocating components to
different machines. Strategies for duplicated conditions with
component types and placement points allocation are proposed
to improve the applicability of the algorithm and the quality
of the solution. An ensemble assembly time estimator that
incorporates the coding of multi-features, including estimated
sub-objectives, is proposed for evaluating the quality of the
solution. Experimental results show that (1) the gaps between
the solution from HHO-MFFEE and the optimal solution
of the model are 3.44%∼7.28% for small-scale data; (2) the
proposed time estimator has higher accuracy than regression
and heuristic-based ones, with mean absolute error of 2.01%
and 3.43% for training and testing data, respectively; and (3)
HHO-MFFEE is better than other state-of-the-art algorithms,
with average improvement of 7.21%∼9.47%.

Index Terms—PCBA line optimization, hyper-heuristic,
component allocation balance, multi-feature fusion time esti-
mator, linear-aligned-heads surface mounter
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PRINTED circuit board (PCB) assembly, the pro-
cess of automatically mounting various electronic

components onto bare boards, is an important phase
in the manufacturing of electronic products, determining
their overall quality. Surface mounters with linear-aligned
heads for improving efficiency are widely deployed in PCB
assembly lines. Manufacturers tend to use multiple surface
mounters in series to increase productivity. However, they
face difficulties in both the schedule of a single machine
and the optimization of the entire line. The efficiency of
single-machine scheduling affects the search process for
line optimization, which in turn decides assembly tasks for
single machines. Solving these two coupled optimization
problems poses a significant challenge.

A PCB assembly line (Fig. 1) consists of automatic
equipment, including a loader, screen printer, surface
mounters, reflow furnace, automatic optical inspector
(AOI), and unloader. Screen printer applies solder paste
to the surface of PCBs. Surface mounters pick and place
components on the PCB pads. Reflow furnace melts
solder paste, which has been already pre-positioned on
the pads, before cooling it to create a permanent solder.
Finally, AOI looks for defects on the PCB to ensure
assembly quality. Of all the equipment, the screen printer
applies solder paste faster, and the reflow furnace puts
PCBs continuously through the oven, which usually does
not become a bottleneck as it is not affected by the
previous process. Inspection equipment can take pictures
of multiple placement points simultaneously, and the
computation time for detection is negligible. In contrast,
surface mounters, which need to accurately pick and
place hundreds of components, have a direct impact on
production efficiency. Central to production control is the
efficient use of machines, with surface mounters being the
bottleneck for assembly efficiency [1–3].

Surface mounters with linear-aligned heads are widely
applied in PCB assembly lines. They consist of a station-
ary platform, two stationary feeder bases, and a moving
gantry with multiple heads. The gantry moves between the
PCBs and the base and is fitted with heads assembled
with suitable nozzles from an automatic nozzle changer
for picking and placing different components. The linear-
aligned design of the heads is spaced in integer multiples of
the slot intervals so that heads can simultaneously pick up
components from the feeders on different slots. Compared
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Fig. 1. PCB assembly line.

with the rotary-head type, the mechanical structure of
linear-heads is simple and reliable, with higher pickup
efficiency, which can achieve high-speed, high-precision
assembly. The applicable types of component packages
are also more diversified.

PCB assembly line scheduling (PCBALS) focuses on
allocating components to multiple surface mounters in a
production line to improve assembly efficiency. The search
for complex feasible domains, which is an extension of
the NP-hard general production line optimization prob-
lem, is time-consuming and intricate. The huge solution
space requires high-efficiency iterative searching, whereas
the long time required for single-machine optimization
is inadequate for evaluating each solution. Component
allocation for the line and time estimation for a single
surface mounter are the main tasks in PCBALS.

Extensive research has been conducted on the PCBALS
problem [2–4], and optimization for a single machine has
been thoroughly studied [5, 6]. Component allocation
has been explored for both model-based [2, 7, 8] and
heuristic-based [4, 9–11] algorithms. Most time estimators
are fitting-based, which progressively evolved from the
number of points to other factors solved by heuristics, such
as the number of assembly cycles [2], nozzle changes [8]
and feeder utilization [10]. However, most research to date
has concentrated on the optimization of lines with rotary-
heads surface mounters [2–4, 10], which differs from the
structural design with linear-aligned heads.

Heuristic algorithms have been well studied in the field
of assembly lines [12], disassembly lines [13] and parallel
machines optimization [14]. Hyper-heuristic algorithms
are a novel optimization framework that combines the
advantages of high- and low-level heuristics to adaptively
solve a wide range of complex optimization problems.
They have been widely applied for route scheduling [15],
truck dispatching [16], or flow shop scheduling [17], among
other problems. The estimation of assembly time has
been studied with regression fitting approaches [18–20].
Ensemble learning provides strong nonlinear fitting capa-
bility, and it can have a high fitting accuracy by designing
extracted data features.

In this article, a hyper-heuristic load balancing al-
gorithm with a multi-feature fusion ensemble estimator
(HHO-MFFEE) is proposed for PCB assembly lines. Algo-
rithm design is tailored to the structural characteristics of
linear-aligned head surface mounters. The hyper-heuristic
framework applies techniques with domain knowledge,

which results in improved mechanisms for the search and
evaluation process, achieving accurate solution evaluation,
efficient search process, and balanced allocation results.
Compared to state-of-the-art algorithms and industrial
solutions, the proposed HHO-MFFEE achieves higher
assembly efficiency. The contributions of this article are
summarized as follows:

1) A hyper-heuristic optimization method is proposed
for linear-aligned-heads surface mounter lines, which
can be applied to different scenarios in terms of
component-machine constraints, component dupli-
cation conditions, or other factors.

2) A set of data- and target-driven low-level heuristics
is presented to search the solution space with high-
quality results.

3) An extraction method for data features is proposed,
and the features are fused within a multi-feature en-
semble time estimator, which makes the estimation
more accurate.

4) An aggregative grouping algorithm for duplicated
component points is proposed to improve the effi-
ciency of PCB assembly lines.

The rest of the article is organized as follows. Sec-
tion II reviews related work about PCBALS. Section III
formulates the mathematical model. The HHO-MFFEE
is presented in Section IV. Comparative experiments
with other state-of-the-art approaches are presented and
discussed in Section V. Finally, Section VI concludes the
article.

II. Literature Review
Many studies have contributed to the optimization

of PCB assembly lines. This article targets the single-
model case [21], where a single PCB type is manu-
factured without line changeover. This topic has been
studied from modeling and heuristic perspectives, with
the sub-problems of component allocation and placement
sequence. In [22], the former has been proven to be NP-
complete, being the main research focus.

Although mathematical modeling can solve problems
optimally, it is difficult to obtain mathematical expres-
sions for some real-world applications. Even when this is
possible, their implementation may require unacceptably
high computational complexity. The integrated model for
changeable head configuration and component allocation
presented in [2] is linearized and includes a partial
relaxation form to speed up the searching process. A
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min-max approximation integer model with setup and
assembly times, as well as an efficient branch-and-bound-
based optimal algorithm, are introduced in [7]. As an
extension to [7], a mixed integer model with feeder
module usage, precedence, and component duplication
constraints is proposed in [23]. In [24] and [25], an expected
value model and a fuzzy goal model are built to deal
with environmental uncertainties, such as demand and
machine breakdown, as a tradeoff between optimality and
stochasticity.

Meta-heuristics are commonly applied in PCB assembly
line optimization. These include genetic algorithms [3, 4]
and hybrid spider monkey optimization (HSMO) [26, 27],
among others. In [3], a genetic algorithm to identify
potential solutions for machine-specific component allo-
cation and placement sequence problems is presented.
In [4], a hybrid genetic algorithm is researched, which
takes into account a more general scenario of component
duplication. The solution is evaluated using a greedy
heuristic for assigning nozzles and headsets. An HSMO
algorithm is developed in [26] to solve component allo-
cation and placement sequence problems simultaneously.
The problem is refined in [27] by incorporating a few extra
features to optimize completion time, energy consumption,
and maintenance time. A combination of an evolutionary
algorithm and mathematical programming to determine
the optimal configuration of the type of surface mounters
in lines is presented in [28].

In addition, constructive heuristics based on intuition
and experience are proposed for PCB line optimization.
In [9], line assignment of modular surface mounters is
divided into three phases: head to module, component to
head, and nozzle to head. Heuristics, including random
search, brute force, and evolutionary algorithms, are
applied in each phase. In [10], a deterministic hierarchical
heuristic is presented to solve the problem at a lower level,
allowing component duplication for identical machines.
In [29], assembly process decisions are decomposed into
four related sub-problems, and list-processing algorithms
for lines with dual-head surface mounters are proposed.

Research has also been conducted to optimize the line as
part of multi-level production planning, consisting of PCB
assignment to the line, component allocation to machines,
and surface mounter optimization. An HSMO algorithm to
simultaneously solve the multi-level problems is presented
in [30]. Hierarchical heuristics are applied in [31] to solve
the problem through job partition, selection, grouping,
load balancing, and scheduling. In [32], a graph-based
divide-and-combine heuristic method is proposed to divide
multiple PCBs within a single product, and then sub-
problems are solved with standard solvers and meta-
heuristics.

Component allocation depends on the assembly time of
surface mounters, and most research is based on estima-
tors. In [18], assembly time is estimated from the number
of component types and placement points using linear
regression. A regularized least-squares regression with a
novel feature solved using the nearest neighbor heuristic is

proposed in [19]. A supported regression method combined
with symbiotic organism search is proposed in [20] to
improve estimation accuracy. Neural networks (NNs) have
the ability to fit arbitrary nonlinear functions. In [33],
a multi-layer perceptron network estimator is presented
considering the component shape and the area of the
smallest rectangle around the component.

To summarize, the present research focuses more on
rotary-head surface mounter line optimization, which
inspires us to further optimize a line consisting of surface
mounters with special linear-aligned head structures in
terms of search capabilities and time estimation accuracy.

III. Problem Formulation and Model
A. Problem Formulation

PCBALS can be regarded as a special type of assembly
line optimization, known to be NP-hard. It has a higher
decision level and higher complexity compared with single-
machine problems. Production optimization of surface
mounters can be viewed as a combination of warehouse
location, task assignment, and route scheduling problems.
There are various combinations of component allocation
among different machines. Specifically, each assembly
component may be assigned to multi-candidate machines
with different processing times, resulting in exponential
growth of the number of feasible solutions.

Among the many factors that influence the efficiency of
a PCB assembly line, surface mounters take the longest
time to process, thus determining the efficiency of the
entire line. A variety of interdependent factors influence
the assembly efficiency of a single surface mount machine,
including the number of cycles, pick-ups, nozzle changes,
and placement points [5]. The result of component alloca-
tion affects the above multiple sub-objectives. In terms
of available resources, assembly tools limit the upper
number of assembly machines for each component type,
and the priority limits the assembly sequence. Due to
resource coupling and conflicting sub-objectives, several
local optimal solutions may exist in the feasible domain.

Fig. 2 shows the main tasks and constraints affecting
PCB assembly line balancing, namely input, output,
constraints, estimator, and optimization tasks. The input
is the PCB to be assembled, which includes the component
information of the placement point. Constraints can be
divided into machine configuration, assembly priority, and
available tools. The optimization task consists of two
parts: line balancing and assembly process optimization
of surface mounter, which have a coupled relationship.
The former is generally regarded as the input of the
latter, and the latter is used to evaluate the quality
of the former solution. In the specific task allocation,
the allocation of assembly tools and components for
lines determines the head and feeder assignment of each
component for surface mounter, which further determines
key performance indicators affecting assembly efficiency.
Assignment of placement points in load balancing affects
the quality of the assembly route scheduling of the surface
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Fig. 2. Main tasks and constraints for PCB assembly line optimiza-
tion.

mounter, which also impacts overall assembly efficiency.
The complexity of the assembly tasks makes it difficult to
directly get productivity. An estimator evaluates actual
assembly time based on the operating process of a single
machine and guides line balancing.

Assembly process optimization focuses on performance
improvement of individual machines through optimizing
feeder configuration, pickup operations, and movement
path, among other factors. Meanwhile, assembly line
optimization focuses on improving the efficiency of the
bottleneck machine. Surface mounter performance directly
affects line efficiency, whereas assembly task assignment
affects machine utilization rate. The large number of
combinations for component allocation makes it difficult to
get high-quality solutions, and computing effort increases
rapidly as problems scale up, needing massive resources
even for small-scale data. For the unique mechanics of
linear-aligned heads, single-machine production simula-
tions with long running time, as well as traditional time
estimators with large errors are no longer applicable. In
production line optimization, it is necessary to reasonably
allocate assembly tasks of each mounter to balance load,
which requires accurate and fast estimation of the assem-
bly process of surface mounters.

B. Integer Programming Model
Notations used in the model are listed in Table I. In [6],

an integer model for head task assignment, including
the major factors that influence assembly efficiency, is
proposed. Based on it, a new approximation model is
proposed that assesses assembly line efficiency in terms
of weighted metrics.

min max
m∈M

T1 ·
∑
k∈K

gkm + T2 ·
∑

k∈K\{|K|}

∑
h∈H

nkhm + T3·

∑
k∈K

wkm + T4 ·
∑
s∈S

∑
k∈K

eskm + T5 ·
∑
i∈I

∑
k∈K

∑
h∈H

uikhm

)
(1)

Objective (1) of the model is to minimize the maximum
weighted key assembly metrics among all machines, with
different weights T1 for assembly cycle, T2 for nozzle

TABLE I
Notations of the Model

Notation Description
Indices & Sets
i ∈ I Index of component type, I = {1, 2, · · · }
j ∈ J Index of nozzle type, J = {1, 2, · · · }
p ∈ P Index of points, P = {1, 2, · · · }
k ∈ K Index of cycle, K = {1, 2, · · · }
s ∈ S Index of slot, S = {1, 2, · · · }
h ∈ H Index of head, H = {1, 2, · · · }
m ∈M Index of surface mounter machine, M = {1, 2, · · · }
q ∈ Q Pair Index of assembly priority , Q = {(i, i′) , · · · },

i ∈ I, i′ ∈ I, which means component type i is
assembled before component type i′

Parameters
ϕi Number of placement points of component type i
θi Number of available feeders of component type i
ζj Number of available nozzles of type j
ξij = 1 iff. component type i is compatible with nozzle

type j (= 0, otherwise)
ηim = 1 iff. component type i is compatible with machine

m (= 0, otherwise)
µip = 1 iff. component type i is compatible with point p

(= 0, otherwise)
τ Interval ratio between adjacent heads to adjacent

slots
T1 ∼ T5 Weights for assembly efficiency-related metrics

N A sufficiently large number
Decision Variables

gkm Binary variable, = 1 iff. any point is assembled in
cycle k of machine m

uikhm Binary variable, = 1 iff. component type i is assigned
to head h in cycle k of machine m

vskhm Binary variable, = 1 iff. head h picks up components
from slot s in cycle k of machine m

fism Binary variable, = 1 iff. component i is assigned to
slot s of machine m

eskm Binary variable,= 1 iff. component is picked up when
the left-most head aligns to slot s of machine m in
cycle k

nkhm Binary variable, = 1 iff. head h of machinem changes
nozzles between cycles k and k + 1

rim Binary variable, = 1 iff. component type i is assem-
bled by machine m

wkm Integer variable, which indicates slots crossed by the
gantry during pick-up in cycle k of machine m

change, T3 for pick-up movement, T4 for pick-up oper-
ations, and T5 for placement operations. As described
below, Constraints (2)–(6) are related to the configuration
of a single surface mounter, whereas Constraints (7)–(13)
incorporate line optimization factors.∑

i∈I

uikhm ≤ gkm ∀k ∈ K,h ∈ H,m ∈ M (2)

nkhm =
∑
i∈I

∑
j∈J

∣∣ξij · uikhm − ξij · ui(k+1)hm

∣∣
∀k ∈ K\ {|K|} , h ∈ H,m ∈ M

(3)

eskm ≤
∑
h∈H

v[s+(h−1)·τ ]khm ≤ N · eskm

∀s ∈ S, k ∈ K,m ∈ M

(4)

wkm ≥ s · eskm − s′ · es′km +N · (eskm + es′km − 2)

∀k ∈ K,m ∈ M, s ∈ S, s′ ∈ S
(5)

fism ≤
∑
k∈K

∑
h∈H

uikhm · vskhm ≤ N · fism

∀i ∈ I, s ∈ S,m ∈ M

(6)
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∑
k∈K

∑
h∈H

∑
m∈M

xikhm = ϕi ∀i ∈ I (7)

∑
s∈S

∑
m∈M

fism ≤ θi ∀i ∈ I (8)

∑
m∈M

max
k∈K

∑
i∈I

∑
h∈H

ξij · uikhm ≤ ζj ∀j ∈ j (9)

rim ≤
∑
k∈K

∑
h∈H

xikhm ≤ N · rim ∀i ∈ I,m ∈ M (10)

rim ≤ ηim ∀i ∈ I,m ∈ M (11)

m−N · (1− rim) ≤ m′ +N · (1− ri′m′)

∀q = (i, i′) ∈ Q,m ∈ M,m′ ∈ M
(12)

max
k∈K,h∈H

k · xikhm +N · (rim + ri′m − 2) ≤ min
k∈K,h∈H

{k · xi′khm +N · (1− xi′khm)} ∀q = (i, i′) ∈ Q,m ∈ M
(13)

The cycle of each machine with component assignment
is defined in Constraint (2). Constraint (3) calculates the
number of nozzle changes. Constraint (4) converts pick-up
slots to the left-most head-aligned one to get the number of
simultaneous pick-ups. Constraint (5) indicates the num-
ber of slots through the pick-up movement. Constraint (6)
represents the relationship between component and feeder
assignment. More details about the relationship between
decision variables and tool constraints of a single machine
can be found in [6].

Constraint (7) denotes all placement points that are
assigned to machines. Constraints (8) and (9) define the
maximum number of machines the component can be
assigned to, which is limited by the number of feeders
and nozzles. Constraint (10) indicates the relationship
between machine-assigned and head-assigned components.
Constraint (11) restricts the components from being as-
signed to compatible machines. Constraints (12) and (13)
restrict the priority of the assembly process. The former
indicates that a component with a high priority cannot be
assigned to a machine later than a component with a low
priority, whereas the latter restricts the order in which
two components are assigned to the same machine.

IV. HHO-MFFEE
A. Solution Framework for the HHO-MFFEE Algorithm

As shown in Fig. 3, the proposed evolutionary-based
HHO-MFFEE is built from low-level heuristics and an es-
timator. Component division and aggregated-based group-
ing algorithms are designed for component duplication
at the beginning and end of the optimization. Multiple
populations with varying component allocation sequences
iterate separately to avoid allocation sequence limiting
efficiency gains while providing multiple high-quality
solutions for further evaluation. The combination and
execution order of low-level heuristics are specified in
the population-generating code. A multi-feature fusion
ensemble time estimator based on fully connected NNs is
proposed to calculate the fitness value of each individual,

fed with data and estimated sub-objectives. In the iterative
process, truncated crossover and mutation operations are
conducted on individuals. After the evolutionary process
is completed, placement points with the same component
type are segregated using an aggregated grouping algo-
rithm.
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Fig. 3. Flowchart of the proposed HHO-MFFEE algorithm.

B. Low-Level Heuristics for Component Allocation
Low-level heuristics (LLHs) are basic compositions of

hyper-heuristics. They can be divided into data- and
target-driven LLHs. The allocation sequence for compo-
nents is preset and heuristics are selected based on the
allocated components.

Data-driven LLHs are connected to the number of
points, component type, and nozzle type, as follows:
components are allocated to the machine with minimum
assigned placement points (Minimum Points Heuristic),
component types (Minimum Component Types Heuristic),
nozzle types (Minimum Nozzle Types Heuristic), and
minimum ratio of number of component types to nozzle
types (Minimum Ratio Heuristic), respectively.

Target-driven LLHs are related to assembly efficiency,
and key sub-objectives are extracted as a basis for com-
ponent allocation. Instead of specific values, they compare
relative values of sub-objectives between surface mounters,
which can be evaluated without a specialized procedure.
The number of heads assigned to nozzle type j of machine
m is denoted as γjm, based on the cascade rounding
method proposed in [34]. The target-driven LLHs are:

1) Minimum Cycle Heuristic, which allocates com-
ponents to the machine with the minimum cycle
without nozzle change, i.e.,

argminm∈M max
j∈J

(∑
i∈I

∑
k∈K

∑
h∈H

(ξij · uikhm) /γjm

)
(14)

2) Minimum Nozzle Change Heuristic, which allocates
components to the machine with the minimum
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probability of nozzle change, reflected in the mean
squared error of the points for each head, i.e.

arg min
m∈M

σ




γjm terms in total︷ ︸︸ ︷∑
i∈I

∑
k∈K

∑
h∈H

ξij · uikhm

γjm
| j ∈ J



(15)

where σ (·) denotes the mean square deviation of a
set.

3) Minimum Pick-up Heuristic, which allocates com-
ponents to the machine with minimum pick-up
operations.

Algorithm 1 presents a method to estimate the number
of pick-ups. A hierarchical greedy heuristic assigns compo-
nents to heads in decreasing order of the number of points,
subject to the number of heads accessible to the nozzle.
Assigned points of each component type for machine m
are denoted as ϕ′. Assignment of all attachable heads to
each component implies the start of a new cycle, and the
number of pick-ups equals the maximum number of points
assigned to heads in each cycle.

The number of component feeders and machine re-
quirements restricts allocatable machines. All LLHs are
based on a set of feasible surface mounters. The set of
assigned surface mounters for each component type cannot
exceed available feeders. The feasible set is adjusted based
on component-assigned mounters. When the number of
assigned mounters equals that of available feeders, the
indices of assigned mounters are regarded as the new
feasible set. Component prioritization needs to be checked
first to see if the loop is closed between constraint
relationships and, if so, there is no solution. Otherwise, if
during component allocation, a newly allocated component
breaks the priority constraint, the assigned components
that do not satisfy the constraint relationship are replaced
and reallocated with the same strategy. The machine with
the fewest points among LLHs with the same evaluation
value has the highest priority for assembling components.

Algorithm 1: Hierarchical Greedy Head Assignment
Input : Nozzle heads γ, component points ϕ′

Output: Number of pick-up operations O
1 Set a 1× |J | vector L, a 1× |J | vector N , and a

1×
∑

i∈I ϕ
′
i vector K of all zeros;

2 Sort i ∈ I decreasingly with ϕ′
i;

3 for i ∈ I do
4 j ←

∑
j′∈J ξij′ · j′ ; // assign nozzle j compatible with

component i
5 if Nj Mod γjm = 0 then
6 Lj ← Lj + 1; // nozzle allocation is full and start a

new cycle
7 end

/* Update maximum number of allocated points and
heads */

8 Set cycle index c← Lj , Kc ← max
(
Kc, ϕ′

i

)
,

Nj ← Nj + 1
9 end

10 O ←
∑c=

∑
i∈I ϕ′

i
c=1 Kc

C. Hyper Heuristic for Line Optimization
In the evolutionary-based hyper-heuristic, each individ-

ual gene correlates to an LLH denoted as a pattern. It
operates in a range of populations with various component
allocation sequences and individual genes of different
lengths, increasing search diversity. The length of genes is
limited to the number of component division groups. All
individuals are initialized with random lengths and pat-
tern combinations. Cyclic access is applied in individuals
with short genes. Each one of the two genes selects a split
point and the crossover operator exchanges gene segments.
The mutation operator inserts randomly generated pat-
terns at the split point. Truncated procedures are applied
to individuals whose length exceeds the limit value. For
each solution, the specific algorithm is executed on the
machine with the longest estimated time, reducing single-
machine optimizations and increasing solving efficiency.

D. Multi-Feature Fusion Ensemble Time Estimator
Ensemble learning with NNs performs well at fitting

complex and nonlinear data. Multi-feature of fitting data
is related to single-machine optimization. Simulated data
are fed to the network to ensure it is sufficiently trained.
The complexity of the PCB assembly process makes
some properties difficult to uncover. Therefore, a heuristic
algorithm is proposed to estimate performance metrics to
improve fitting accuracy.

The framework of the estimator is shown in Fig. 4.
Input coding consists of three parts. Basic data are the
total number of placement points, component types, nozzle
types, and board size. The estimated number of cycles and
pick-ups of the preceding section, as well as nozzle change,
builds the target feature coding. Nozzle and component
types are coded in descending order based on the total
number of points as extended parts. Grouped components
are the object of LLHs allocation, which involves only
the type of components and the number of placement
points. The independence of point distribution is due to its
coding difficulty and relatively small impact on efficiency.
A sufficiently long encoding is used to ensure consistency
across diverse data inputs to networks, with redundant
bits supplemented by zeros.

x1

x2

xN

Bagging Ensemble Learning

Input

PCB

Data

Heuristic

Estimator

q Num. of Pickups

q Num. of Nozzle 

Changes

q Num. of Cycles

Target Feature Coding

q Num. of Component Type

q Num. of Nozzle Type

q Num. of Points

q Type of Points

Basic Feature Coding

q Nozzle Type & Num. of 

Points for Each Component

Extended Feature Coding

Subsamping

Base Model 1Subset 1

Training Evaluation

Model Output

Subsamping

Base Model 2Subset 2

Training

Subsamping

Base-Model 5Subset 5

Training

Assembly

Time

Fig. 4. Framework of the multi-feature fusion ensemble time
estimator.
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The estimation of nozzle change probability cannot
be directly coded. Algorithm 2 proposes a computation
heuristic for it. Components with the same nozzle type are
grouped according to their respective nozzle heads. The
group of nozzle j of machine m is denoted as Gjm. Nozzle
groups are progressively assigned to heads, starting with
empty heads and proceeding sequentially to the heads with
the fewest points. When the allocation process is complete,
the heads with the most and least points are divided
equally, which is accepted if the efficiency gain from
reducing the number of cycles after equalization outweighs
the efficiency loss from increasing nozzle changes. This
process is repeated to increase the number of heads of the
nozzle with the most head-averaged points, and the total
number of nozzle changes is recorded.

Algorithm 2: Nozzle Change Computation Heuris-
tic
Input : Nozzle heads γ, component points ϕ
Output: Number of nozzle changes N∗

1 Set 1× |H| vector T of all zeros, 1× |H| vector N , V ← 0,
V ∗ ←∞ and N∗ ← 0;

2 while V ≤ V ∗ do
3 Set 1× γjm nozzle group Gjm with

∑
i∈I ϕi · ξij/γjm

points for j ∈ J ;
4 for n ∈ Gjm, j ∈ J do

/* assign nozzle groups to heads */
5 h← argminh′∈H {Th}, Nh ← j, Th ← Th + n
6 end
7 Set number of cycles V ← maxh∈H Th ;
8 while true do

/* balance the points of heads */
9 h′←argmaxh∈H Th , h′′←argminh∈H Th ;

10 if Nh′ = Nh′′ then
11 break;
12 end

/* compare the weighted metrics */
13 j′ ← Nh′ , H1 ← {h | Nh = j′, h ∈ H}, j′′ ← Nh′′ ,

H2 ← {h | Nh = j′′, h ∈ H}; if
T3 · (Th′ − Th′′ ) > T2 · ||H2| − |H1|| then

14 break;
15 end

/* update assignment result */
16 N ← ||H2| − |H1||,

V ← V − T3 · (Th′ − Th′′ ) + T2 ·N , T ′ ← T ;
17 for h ∈ H1 ∪H2 do
18 Th ←

∑
h′∈H1∪H2

T ′
h′/ (|H1|+ |H2|), Nh ← j′;

19 end
20 end
21 if V < V ∗ then
22 V ∗ ← V , N∗ ← N , γj′m ← γj′m + 1 ; // add nozzle

groups and re-allocate
23 end
24 end

E. Heuristics for Component Duplication
Components with multi-available feeders can be as-

signed to more than one surface mounter, which is called
a duplicated condition. To deal with this case, in this
section the algorithm is improved in two ways. Firstly,
components are grouped to meet the needs of distributing
multiple machines. Equation (16) gives threshold θ̂i, above
which components with more points are to be split.

θ̂i = max

(
ε ·
∑
i′∈I

θi′ · ϕi/
∑
i′∈I

ϕi′ , θi

)
∀i ∈ I (16)

Algorithm 3: Duplicated Component Points Allo-
cation Algorithm
Input : Number of feeders θ, component-point

compatibility µ, points position (x, y),
machine-component assignment u and r

Output: Machine-allocated points P
1 Set machine-assigned sets Pm ← ∅, number of machine-head

assigned points Vihm ← 0 and head-derivation him ← 0,
∀i ∈ I, h ∈ H,m ∈M ;

2 Set ρh as the interval distance between head h and left-most
head ;

3 for m ∈M do
4 for i ∈ {i′ | ri′m > 0, θi′ = 1, i′ ∈ I} do
5 Pm ← Pm ∪ {p | µip = 1, p ∈ P} ;
6 end
7 for i←

∑
i′∈I i

′ · ui′khm, k ∈ K, h ∈ H do
8 Vihm ← Vihm + 1, him ←(

1− 1/
∑

h∈H Vihm
)
· him + (h− 1) /

∑
h∈H Vihm

9 end
10 Set center points of each machine Xm ←

∑
p∈Pm

11
(
xp −

∑
i∈I µip · him

)
/ |Pm| ,Ym ←

∑
p∈Pm

yp/ |Pm| ;
12 end
13 while true do
14 X ← X , Y ← Y, V ← V, P ← P ;
15 for p ∈ {p′ | p′ ∈ Pi, θi > 1} , i ∈ I do
16 Set

(
m̂, ĥ

)
← argminm∈M,h∈H

{(
Xm − xp + ρh

)2
+

(
Ym − yp

)2 | Vihm > 0
}

as the allocated
machine, Pm̂ ← Pm̂ ∪ {p} , Viĥm̂ ← Viĥm̂ − 1 ;

/* update number of assigned points and center of
surface mounters */

17 X m̂ ← X m̂ +
(
xp −X m̂ − ρĥ

)
/
∣∣Pm̂

∣∣,
Ym̂ ← Ym̂ +

(
yp − Ym̂

)
/
∣∣Pm̂

∣∣;
18 end
19 if

∑
m∈M

(∣∣Xm −Xm

∣∣+ ∣∣Ym − Ym
∣∣) < 10−3 then

20 break;
21 end
22 end

where ε regulates the number of groups. This grouping
strategy balances search efficiency and diversity. Besides,
the set of feasible surface mounters is updated syn-
chronously in the allocation process.

Secondly, the distribution of points has an impact on as-
sembly efficiency, and an aggregative grouping is proposed
in Algorithm 3. Component allocation determines the
upper number of placement points of each type assigned to
each surface mounter. The initial aggregated center of each
machine is determined by the components with a single
feeder. Current research [5, 6] divides surface mounter
optimization into head task assignment and pick-and-
place sequencing, where the former determines the head-
deviation h for the alignment of the heads. The adjustment
of the group center helps to shorten the moving path of
the linear head and improve assembly efficiency.

V. Comparative Experiments
A. Experimental Setup

Experiments have been carried out using a PC with
an Intel(R) Core(TM) i5-14600KF. Table II shows the
parameter settings of the hyper-heuristic and estimator.
Iterations are carried out across populations with ten
randomly generated component allocation sequences. The
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TABLE II
Hyper-Heuristic and Estimator Parameters

Method Parameters Value

Hyper
Heuristic

Size of Population 10
Threshold Parameter 1.5
Num. of Individuals in

Population
20

Crossover & Mutation Rate 0.6 &
0.1

Number of Iterations 50

Estimator Learning Rate 10−5

Number of Epochs 8000

multiplier of component grouping is set to 1.5. The time
estimator is a two-middle-layer fully connected NN with
1,000 neurons per layer and ReLu is used as the activation
function. Results are compared for PCB assembly lines L1,
L2, and L3, equipped with 2, 3, and 4 surface mounters,
respectively. Fifteen PCB data from actual manufacturing
lines are used to evaluate the assembly efficiency of the
algorithm, with the first five being on a smaller scale, as
shown in Table III. As meta-heuristic results are random,
the average of the five runs is taken as the result.

Training and testing data for time estimation fitting
are randomly generated, and assembly times are obtained
from the built-in simulator of the surface mounter, which
is accurate for performing optimization and full assem-
bly process simulation. The distribution of placement
points impacts assembly efficiency. Training data with
either sparse or concentrated distribution can reduce the
generalization performance of the estimator, which can
be refined by fitting randomly generated points with
relatively uniform distribution. Table IV shows statistical
PCB data. Data outliers are detected and removed using
the inter-quartile range rule [20] with a multiplier of
0.6. Training and testing data have similar distribution
characteristics.

B. Comparison of HHO-MFFEE and Mathematical
Model

Mathematical programming is used to find optimal
solutions, but only for small-scale data. In this section,
the solutions obtained by HHO-MFFEE are compared
with the approximated optimal solutions of the model,
which is built by extracting key metrics that affect as-
sembly efficiency. The model is validated using the Gurobi
solver [35]. To make the model linear and solvable, it is
assumed that enough nozzles are available. In addition,
placement priority constraints are ignored. The weights of
the model are set using a linear fit to the training data,
with T1 = 0.041, T2 = 0.326, T3 = 0.870, T4 = 0.159 and
T5 = 0.015. The effect of the layout of points on assembly
efficiency is ignored. Table V presents the comparison of
the first five data. TM and TH represent the weighted
performance metrics of the model and the proposed
algorithm, respectively. Gap δT = (TH/TM − 1) · 100%
with respect to the optimal solution of the model is

7.28%, 6.58%, and 3.44% on average in 3 assembly lines.
Comparison with the model reveals that the proposed
algorithm is close to the optimal solution, with a maximum
gap of 12.10%. The performance of the hyper-heuristic
algorithm is comparable to that of the model solution, and
its higher solving efficiency makes it possible to apply it
to larger-scale data.

C. Evaluation of the Proposed Time Estimator
The accuracy of the time estimator impacts the search

direction for component allocation, as well as the quality of
solutions. In this subsection, four different time estimators
are compared with the proposed one, which yields E1.
E2 refers to the ensemble fitting method using basic
parameters, without the target related terms, which is
another way of encoding. Results for the heuristic estima-
tors proposed in [4] and [9] are denoted as E3 and E4,
respectively, with coefficients computed using the least
squares method. E5 refers to an ensemble algorithm with
symbiotic organism search-based support vector regression
(SOS-based SVR) [20].

Mean and maximum absolute errors of training and
testing data are listed in Table VI. The performance of the
fitting method on the testing set is the basis for evaluating
the accuracy of the estimators. The two NN-related
methods provide better time estimation. The proposed
estimator encoding method reduces the average absolute
error on the testing set from 5.16% to 3.43%, compared
to simply feeding basic parameters. The number of pick-
ups is not incorporated in the two heuristic-based linear
regression fittings, resulting in poorly fitted results with
mean absolute errors of 9.41% and 9.44%, respectively.
Despite being effective in the workshop production line
of the PCB assembly process, the SOS-based SVR has
the lowest fitting accuracy, as it ignores the distinctive
properties of each single PCB.

D. Comparison of Low-level Heuristics
Ten PCBs are used to compare the performances of

individual LLHs in L2. Table VII shows optimization
results of load allocation. Ap, An, Ac and Ar are the
data-driven LLHs, i.e., Minimum Points, Minimum Noz-
zle Types, Minimum Component Types, and Minimum
Ratio, respectively. Ak, Ag and Au are the target-driven
LLHs, i.e., Minimum Cycle, Minimum Nozzle Change, and
Minimum Pick-up, respectively. Both Ap and Ak achieve
higher assembly efficiency by more balanced cycles and
placement points. Results of LLHs that indirectly affect
efficiency or single-objective related have low efficiency.
All single-LLHs fail to achieve the hyper-heuristic effect.

The ratio of each LLH when using the hyper-heuristic is
shown in Fig. 5. Balancing the number of placement points
among surface mounters is the main task of optimization.
The ratio of target-driven operators is higher than that of
data-driven ones in the remaining LLHs. Nozzle change-
related term Ag occurs less frequently in the assembly
process. Thus, for most data, the pickup-related Au is
more relevant in the search process.
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TABLE III
Statistical PCB data

PCB 1-1 1-2 1-3 1-4 1-5 2-1 2-2 2-3 2-4 2-5 2-6 2-7 2-8 2-9 2-10
Num. of Comp.

Type
4 4 5 5 5 16 29 7 24 45 7 47 40 10 40

Num. of Nozzle
Type

3 3 3 2 2 3 3 3 3 4 4 4 2 3 4

Number of Points 28 34 34 30 30 78 165 192 236 209 320 390 546 720 1510
Number of Feeders 10 6 8 7 5 19 30 12 28 47 14 54 50 19 40

TABLE IV
Parameters of Training and Testing Data

Training
Sets

# of
Samples

Outlier
(%)

Mean Median

2000 11.25 128.67 130.13
Minimum Maximum Std. Dev

2.71 302.94 71.67

Testing
Sets

# of
Samples

Outlier
(%)

Mean Median

400 10.75 126.76 127.11
Minimum Maximum Std. Dev

3.80 311.38 72.23

TABLE V
Weighted Key Metrics Indicators of the Mathematical Model and

the Proposed HHO-MFFEE Algorithm

Line L1 L2 L3
TM TH δT (%) TM TH δT (%) TM TH δT (%)

1-
1

2.585 2.626 1.59 1.758 1.837 4.49 1.676 1.813 8.17

1-
2

3.286 3.672 11.75 2.785 3.122 12.10 2.473 2.514 1.66

1-
3

2.719 2.998 10.26 2.218 2.445 10.23 1.947 2.054 5.50

1-
4

2.744 3.017 9.95 2.202 2.314 5.09 2.202 2.243 1.86

1-
5

2.933 3.017 2.86 2.432 2.456 0.99 2.432 2.432 0.00

Avg 7.28 6.58 3.44

TABLE VI
Estimated Accuracy of the Tested Algorithms

Set Parameters E1 E2 E3 E4 E5

Training Mean Absolute Error
(%)

2.01 5.09 8.75 8.75 45.30

Max. Absolute Error
(%)

18.80 21.28 37.61 37.68 214.94

Testing Mean Absolute Error
(%)

3.43 5.16 9.41 9.44 45.99

Max. Absolute Error
(%)

16.57 18.65 27.65 28.82 183.98

TABLE VII
Solutions Obtained by Various LLHs

PCB Ap An Ac Ar Ak Ag Au

2-1 10.06 10.26 9.52 9.88 9.72 9.79 10.70
2-2 15.38 18.28 16.12 19.97 14.75 17.66 16.01
2-3 20.46 20.48 20.00 23.06 20.10 22.81 19.18
2-4 18.98 25.97 19.87 26.24 21.17 27.06 22.84
2-5 22.36 28.25 26.14 29.64 21.13 32.34 22.94
2-6 28.81 35.23 28.79 38.40 28.78 33.84 27.69
2-7 46.21 45.29 40.47 51.13 42.57 45.42 43.27
2-8 52.07 59.06 50.44 59.39 51.73 63.46 49.05
2-9 66.93 67.80 65.82 84.64 65.98 68.50 65.42
2-10 135.68 143.67 143.01 168.83 139.76 146.01 149.82

 !

"

Fig. 5. Ratio of each LLH when using the hyper-heuristic.

E. Comparison with Other Algorithms

The main task of the line optimizer is to allocate
components to machines. In this subsection, the proposed
algorithm is compared with three state-of-the-art solu-
tions, namely an industrial solver released in 2022 by
an advanced manufacturer, the integrated algorithm [4],
and the hybrid algorithm [9]. The industrial solver is an
optimizer embedded in an integrated production line man-
agement tool for surface-mount assembly lines. The inte-
grated algorithm is a genetic-based method that provides
solutions for PCB assembly lines by designing operators to
search the feasible domain. The hybrid algorithm combines
random search, local search, and evolutionary algorithms,
among others. Since the spider monkey algorithm has been
widely used in PCB assembly line optimization [26, 27, 36],
this section further integrates it into the hybrid framework
and improves it based on the coding and searching
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TABLE VIII
Assembly Times of the Tested Algorithms

Hyper Heuristic Industrial Solver Hybrid Algorithm Integrated Algorithm
PCB L1 L2 L3 L1 L2 L3 δ (%) L1 L2 L3 δ (%) L1 L2 L3 δ (%)
2-1 10.14 8.06 6.21 12.91 8.41 6.56 12.46 10.91 9.42 7.17 13.28 14.97 8.41 6.83 20.66
2-2 19.55 14.28 11.61 20.78 14.75 12.95 7.01 19.89 14.93 12.42 4.42 20.61 14.75 12.35 5.01
2-3 21.15 18.06 12.59 21.19 18.77 14.44 6.26 23.39 18.26 14.92 10.06 23.18 18.77 14.72 10.14
2-4 26.10 17.85 13.87 26.29 18.66 13.96 1.95 28.14 19.17 14.38 6.30 29.37 18.66 14.86 8.06
2-5 27.86 19.33 15.35 32.32 19.59 15.79 6.75 33.48 21.29 16.89 13.46 32.57 19.59 16.66 8.95
2-6 38.63 26.53 22.83 44.42 27.91 23.02 7.00 39.11 27.34 22.44 0.86 45.05 27.91 24.22 9.30
2-7 50.15 34.12 26.23 53.91 36.93 26.85 6.04 58.73 40.79 29.72 16.66 57.76 36.93 31.32 14.28
2-8 71.32 48.08 39.42 73.96 51.16 40.18 4.01 72.02 51.91 40.28 3.70 75.09 51.16 42.76 6.72
2-9 85.69 60.91 46.07 91.18 63.91 52.57 8.48 94.66 66.08 53.05 11.36 91.95 63.91 47.10 4.82
2-10 176.99 117.93 90.78 179.94 125.79 116.23 12.12 185.07 128.07 96.73 6.57 188.01 125.79 97.54 6.78
Avg 7.21 8.67 9.47

2-1 2-2 2-3 2-4 2-5 2-6 2-7 2-8 2-9 2-10

15

18

21

24

27

30

33

36

×103

 Hyper Heuristic  Industrial Solver
 Hybrid Algorithm  Integrated Algorithm

Ch
ip

 P
er

 H
ou

r

PCB

L1
2-1 2-2 2-3 2-4 2-5 2-6 2-7 2-8 2-9 2-10

24

28

32

36

40

44

48

52
×103

 Hyper Heuristic  Industrial Solver
 Hybrid Algorithm  Integrated Algorithm

Ch
ip

 P
er

 H
ou

r

PCB

L2
2-1 2-2 2-3 2-4 2-5 2-6 2-7 2-8 2-9 2-10

35

40

45

50

55

60

65

×103

 Hyper Heuristic  Industrial Solver
 Hybrid Algorithm  Integrated Algorithm

Ch
ip

 P
er

 H
ou

r
PCB

L3
Fig. 6. Distribution of optimization results of the tested algorithms on three PCB assembly lines.

approaches proposed in [27, 36]. The industrial solver
provides complete solutions from assembly line balancing
to surface mounter optimization, and the rest of the single-
machine optimizations are based on the methods proposed
in [6].

Table VIII shows the optimization results of the four
tested algorithms. The proposed hyper-heuristic algorithm
outperforms the industrial solver, and the hybrid and
integrated algorithms by 7.21%, 8.67%, and 9.47%, respec-
tively. In addition, the distribution of the optimization
results in three assembly lines are shown in Fig. 6. In
algorithms with randomized results, the hyper-heuristic
produces a more consistent result. In most cases, the
results of a single run of the hyper-heuristic outperform
those of the other methods. Even if it produces some
weaker solutions, the vast majority of them outperform
the best solutions from the other methods.

F. Analysis of Solving Efficiency
Solving efficiency is one of the most important perfor-

mance indicators for large-scale combinatorial optimiza-
tion problems. Solving times for PCBALS using three
of the tested algorithms are shown in Table IX. The
industrial solver is not included in the comparison, because
it is built into a runtime software package, which includes

importing data, optimizing, and outputting results, so its
solving times cannot be separated from the rest for fair
comparison. The hybrid algorithm consists of relatively
basic operators, which allow it to search quickly at the cost
of solution quality. The hyper-heuristic and integrated
algorithms use a more complex time-fitting approach and
account for component duplication, resulting in longer
times than that of the hybrid algorithm. The proposed
HHO-MFFEE is more efficient than the integrated algo-
rithm, and the quality of the solution it provides is higher.
Evaluating the quality of the candidate solutions takes
a large part of the solving time of the hyper-heuristic.
PCB2-5 and PCB2-10 are more complex. Single-machine
optimization takes longer for PCBs with a larger number
of components and nozzle types, resulting in relatively
poor solving efficiency. By shortening the execution time
of surface mounter optimization, efficiency may be further
increased.

VI. Conclusion
This article presents HHO-MFFEE, a hyper-heuristic

optimization method for PCBALS with a multi-feature
fusion ensemble time estimator. The hyper-heuristic al-
gorithm is implemented using data- and target-driven
LLHs. A min-max mathematical model is built covering
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TABLE IX
Solving Times of the Tested Algorithms

Hyper Heuristic Hybrid Algorithm Integrated Algorithm
PCB L1 L2 L3 L1 L2 L3 L1 L2 L3
2-1 17.28 20.95 24.26 15.84 18.97 21.69 54.13 59.35 62.99
2-2 33.98 31.35 30.71 63.45 63.70 68.54 64.05 68.51 75.21
2-3 13.98 15.62 19.64 26.56 32.01 37.27 50.74 54.99 63.95
2-4 21.51 23.73 26.20 9.31 11.08 12.26 64.05 68.17 76.23
2-5 100.2281.51 87.45 23.49 28.06 32.57 85.59 90.02 96.65
2-6 21.32 18.32 21.74 49.13 56.61 65.24 63.57 67.34 73.92
2-7 93.22 70.93 68.72 12.80 14.17 16.01 100.3196.79 104.06
2-8 40.19 42.99 38.08 55.18 59.92 65.67 91.20 95.64 104.69
2-9 29.20 27.52 30.12 40.48 48.99 55.56 89.30 92.85 101.16
2-10 135.9876.67 76.71 25.48 24.94 24.90 144.55155.60171.15

the major assembly efficiency metrics. In terms of solution
quality, the proposed method has comparable performance
to the optimal one obtained by the model when dealing
with small-scale data. The strategies for component du-
plication divide components of the same type, balancing
assembly time between machines and improving assem-
bly efficiency. An aggregated grouping algorithm assigns
placement points to the specific surface mounters. The
proposed time estimators have high fitting accuracy, and
coding with approximated sub-objectives further enhances
fitting accuracy. The combination of the high accuracy of
the estimator with the hyper-heuristic search capability
for large domains results in high-quality solutions for
PCBALS problems. Compared with industrial solutions
and other state-of-the-art algorithms, the proposed one
achieves higher assembly efficiency and stable results with
acceptable solving times.

Future research will focus on load balancing optimiza-
tion of flexible PCB assembly lines. For high-mix, low-
volume PCB production tasks, its efficiency is affected by
the configuration adjustments of surface mounters. This
involves the optimization of the scheduling of dynamic pro-
duction tasks, and enhancing the efficiency of the feeder
module changeover, among others, which is beneficial to
shorten the productive cycle and reduce storage cost, so
that small- and medium-batches can achieve profitability
comparable to that of mass manufacturing, and improve
the efficiency, robustness, and stability of the assembly
line.
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