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Abstract— The optimization of printed circuit board as-
sembly (PCBA) for a beam head placement machine is a
multivariable and multiconstraint combinatorial problem.
Current techniques falter in solving a variety of PCBA prob-
lems since heuristic algorithms lack theoretical guarantees
of optimality, and mathematical modeling methods have
high computational complexity for the whole problem. This
article proposes a novel two-phase optimization for PCBA,
integrating the advantages of mathematical modeling with
heuristic algorithms. We divide the problem into the head
task assignment and the placement route schedule. For the
former, an effective integer linear programming (ILP) model
with component partition is proposed, encompassing key
efficiency-influencing factors. A recursive heuristic-based
initial solution speeds up the solving convergence, while
the reduction strategies enhance model solvability. For
the placement route schedule, a tailored greedy algorithm
yields high-quality solutions, leveraging the results of the
model, and an aggregated route relink heuristic (ARRH)
does further optimization. Additionally, we propose selec-
tion criteria for the solution pool of the model to pre-
evaluate the placement movement, which builds the con-
nection between the two phases. Finally, we validate the
performance of the two-phase optimization, which provides
an average efficiency improvement of 8.06%~24.32% com-
pared to other mainstream research.

Index Terms— Beam head placement machine, PCB as-
sembly optimization, head task model, placement route
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[. INTRODUCTION

URFACE mount technology is essential to the electronic
S manufacturing industry. The need for higher efficiency
in production lines has become more acute in electronic
industries with the expansion of the manufacturing sector. The
placement machines utilized to execute automated component
surface assembly operations are the most crucial equipment
in integrated printed circuit board assembly (PCBA) lines [1].
Developing surface assembly equipment is a systematic project
involving multiple subjects, including visual recognition and
positioning, advanced motion control, scheduling techniques,
etc. In this article, we study the scheduling optimization tech-
niques of the PCBA process using mathematical programming
and heuristic algorithms.

The mechanical design of the beam head placement ma-
chines comprises placement heads, feeders, nozzles, and other
connected accessories. They collaborate in three steps of the
assembly process: component pickup, inspection, and place-
ment. The heads are equipped with appropriate nozzle types
for various types of components and are designed for pickup
and placement operations. The components are picked up
from feeder slots by linear aligned heads simultaneously and
placed in the predetermined PCB pads, which consist of a
pick-and-place (PAP) cycle. When the nozzle on the head is
incompatible with the component type picked up from the
feeders, a nozzle change operation is done at the auto nozzle
changer.

Early PCBA optimization research focuses on modeling
simple machine types, such as single-head sequential pick-
and-place machines [2] and multi-heads for single component
type placement machines [3]. The integrated model for PCBA
optimization has characteristics that combine the models for
several sub-problems. Studies in [4] formulate a model in
which the multi-heads case solves component sequencing,
feeder assignment, and nozzle assignment simultaneously. In
contrast, studies in [2] solve the sub-problems of component
sequencing and feeder arrangement as a hierarchical multi-
objective optimization problem.

The high complexity of the problem makes decomposition
modeling necessary. As an extension of [3] for the multi-heads
and multi-component types of case, a two-stage mixed integer
programming model is proposed in [5] to optimize the nozzle
component assignment and assembly route schedule, respec-
tively. In [6], the problem is decomposed into hierarchical
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mixed integer pickup and placement models. Studies in [7]
present a problem decomposition approach for component
machine allocation and PCB sequence problems, which are
modeled separately. Moreover, a few of the studies model the
sub-problems therein, such as the nozzle assignment model
in [8], [9] and the feeder module change model in [10].
The edge-based and route-based models have been developed
in [11] for placement route schedules, and the branch-and-
price method with effective branch rules solves the latter.

A series of techniques are applied in the modeling process to
enhance its solvability. Studies in [12] present a mathematical
model based on pickup groups to reduce the scale of the
model, whereas studies in [13] propose an aggregated integer
programming based on batches of components. In [14], an
augmented ¢ method is proposed to optimize multiple sub-
objectives by the curve matching method.

The large space of the solutions leads to the design of
improved heuristics [15], and mathematical models typically
are combined with them for higher computing efficiency.
Hybrid genetic [12], [16], [17], tabu search [3], [18], par-
ticle swarm [19], frog leaping [20], [21] and other intel-
ligent optimization algorithms are integrated to the PCBA
optimization. Additionally, multiobjective optimization is also
integrated with intelligent optimization; for instance, studies
in [14] present a multiobjective particle swarm optimization,
and studies in [22] integrate intelligent optimization with
curve matching techniques. A cluster-based heuristic is applied
to group components based on their properties with single
gantry [23] and dual gantry [24] placement machines to
optimize the pick-and-place sequence.

In this article, the proposed two-phase optimization method
combines integer linear programming (ILP) models and
heuristic algorithms, and its framework is shown in Fig. 1.
In the first phase, we extract the primary objectives of the ILP
model for the head task assignment, which is related to the
pickup route. A series of techniques are proposed to improve
the efficiency of model solving. To improve the quality of
the overall solution, we further select the solutions of the
model from the pool of the first phase. As there is insufficient
information regarding the points and sequence of heads place,
a pre-evaluation heuristic provides a selection criterion based
on the estimated assembly path. In the second phase, we solve
the placement route schedule problem of the assembly process
using heuristic methods. The combination of mathematical
modeling and heuristics ensures the high-quality of the major
sub-objectives while taking into account the overall solving
efficiency of the algorithms.

The main contributions of this article are summarized as
follows:

1) An effective integer linear model for the PCB assem-
bly process is proposed to optimize the primary sub-
objectives of the assembly process. The model pre-
processing techniques are studied to improve the search
efficiency.

A placement greedy route schedule the linearly aligned
heads is proposed for with the constraint of the head
task assignment, and the solution is further optimized by
a route relink heuristic, which outperforms mainstream
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Fig. 1. The framework of two-phase optimization with ILP model and

heuristic algorithms.

methods.

3) A pre-evaluation selection criterion is present for the one
from the solution pool, which overcomes the drawbacks
that modeling without movement terms may degrade the
quality of the solution.

The rest of this article is organized as follows. In Sections II
and III, respectively, each phase of the proposed framework
is discussed. An ILP model based on the analysis results of
the assembly process and its solving techniques is proposed
in Section II. The placement route schedule heuristics with
determined greedy and random relink heuristic algorithms are
present in Section III. In Section IV, we give the experimental
comparative results with a commercial optimizer Gurobi [25].
Section V concludes this article.

Il. HEAD TASK MODEL FORMULATION
A. PCB Assembly Problem

The PCBA process comprises several aspects. The pick-and-
place operations, nozzle change operations, and movements
are the most critical aspects that affect its efficiency. The
mechanism of beam heads is specially designed for simulta-
neous pickup operations to improve efficiency, whereas the
placement operation time is determined by the PCB data.
The heads can assemble different components by changing
a compatible nozzle type, but it is time consuming and
often discouraged. Beam head movements consist of pickup,
placement, and round-trip movements between the feeder base
and PCB. The number of PAP cycles affects the round-trip
movements, and the slots where pickup operations take place
affect the pickup movements.

The nozzle types, component types, and pickup slots are
the three basic compositions of the head task assignment.
We call the consecutive PAP cycles with the same head task
assignment as the cycle group. The objective of the model
entails the primary sub-objectives, except for the movements
of the gantry, which is optimized by the route schedule
method. The PCBA process can be regarded as a capacitated
vehicle route schedule problem [12], with restriction of a head-
accessible point set, which proves it is nevertheless a NP-hard
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TABLE |
NOTATIONS SUMMARY OF THE MATHEMATICAL MODEL

Indices & Sets

i€l index of component type, I = {1,2,---}
j€eJ index of nozzle type, J = {1,2,---}
he H index of head, H = {1,2,---}
peP index of placement point, P = {1,2,---}
lel index of cycle group, L = {1,2,---}
s€8,S.! index of feeder slot, S = {1,2,---}, and S, =
{_T‘(‘H| _1)+1=70717277|S|}
Parameters
T the average moving time of round trip between PCB and
feeder base
T> the average time of nozzle change operation
T3 the average time of pickup operation
Cip = 1 if component type 7 is compatible with placement point
p, otherwise, (;p =0
X the number of placement points of component type ¢
T the ratio between the interval of adjacent heads and slots
T the interval distance between adjacent heads
M a sufficiently large positive number.
Decision Variables
Uikl = 1 if and only if head h picks up the component type ¢
in cycle group [
Zjni = 1 if and only if head h is equipped with nozzle type j
in cycle group [
Vshi = 1 if and only if head h picks up component from slot
s in cycle group [
fsi =1 if and only if component type i is arranged on slot s
Psi = 1 if and only there are at least one head h picking up
components from slot s+ (h — 1) -r whose equivalent slot
is s.
nip = 1 if and only if head h changes its equipped nozzle
between cycle group [ and [ + 1
wy the number of PAP cycle in cycle group [

! The subset S, refers to the equivalent slots set of aligned slots of the
leftmost head when one head pickups component.

problem, and the extra constraints rather increase the difficulty
of solving the problem.
The assumptions for the PCBA process are listed below.

o The compatibility between the nozzle and component
types is predetermined.

o The assembly time of the different types of components
is the same, and the capacity of the feeder base is much
larger than the requirement.

o The interval between adjacent heads is an integer time
of the interval between adjacent slots for simultaneous
pickup.

o The time spent moving to the ANC for nozzle change is
included in the nozzle change time, and the number of
nozzle types is less than the number of heads.

B. Integer Linear Programming Model

An integer model for the head task assignment is derived
based on [6], where the components are partitioned into
different cycle groups. The notations of the integer model are
summarized in Table I. The objective (1) of the model is the
sum of the number of PAP cycles, nozzle changes, and pickup
operations with different weights.

minTl-Zwl-l-Tg- Z th-‘rT3' Z Zwl'psl

leL heH IEL s€S, lEL
)]

The nonlinear term w;-pg; in the objective can be substituted
by an intermediate variable \g;, which represents the number
of pickups from slot s in cycle group ! and can be linearized
with big M method as

)\sl < M- DPsi,

Ast Sy,

Asl > Wy _M'(l_psl)a
Constraint (3) ensures that the sum of placement points of

component type ¢ on all cycle groups equals the number of
points on the PCB.

Zzwl'uihl:¢i Viel 3)

heH leL

Vs € Se,l € L. 2)

The nonlinear term of constraint (3) can also be linearized,
similar to the linearization of the nonlinear term in the
objective function.

Constraints (4)—(5) convert the pickup slot to the leftmost
head-aligned one, so that the number of pickup operations in
a cycle group can be computed directly.

Psl 2 Vst (h—1)rjut Vh € H,s €S, l € L 4)

D Vst (hotyane = Pot V5 € Se,l € L (5)
heH
The number of nozzle changes between cycle group [ and
l+1 is determined by constraint (6). Since the boards take over
during the assembly process, we can regard the (|L|+ 1)st
cycle as the first cycle of the next board.

1
nm:§§:%m—%WH”‘W€HJEL (6)
jed
The nonlinear term of absolute value can be further lin-
earized as present in [13], which is replaced by the sum of
two positive terms n;rhl and Njp, as

_1 + -
h =752 ey (”jhl + ”jhl) )
-+ =
Zjhl — Zin(41) = Ming — Mings

+ —
i = 0,m5, 20

VjeJheHleL.

(7N

There is a coupling between the two decision variables wu;p;

and vgp;, and the product of the two 7;,7,; determines the feeder
assignment as

fsi>vism Vicl,s€cShcHIlclL (8)
Z Z'Yishl Z fsi Vs € S,Z el (9)
heH leL

with the nonlinear term ;511 = w;n; - Usni, Which represents
whether the head h picks up components 7 from slot s in cycle
group [, is rewritten as

Yishi < Uihl,
Yishl < Ushi,
Vishi = Wil + Vsnt — 1,

Viel,se S heH,

lelL.

Component assignment determines the pickup slots, and

Constraint (11) specifies the relationship between the result
of the pickup operation and component assignment.

szhz > Zumz Vhe H,le L

ses el

(10)

(11
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In addition to the above improved constraints, the con-
straints on tool consistency and compatibility are given in [6].

C. Initial Solution with Heuristic Algorithm

The proposed model solving is a complex computing pro-
cess in the branch-and-cut framework, and a high-quality
initial solution could eliminate the blindness search and speed
up convergence to the optimal solution. In the modeling
process, the number of cycle groups |L| is still an uncertain
hyperparameter, which has a significant impact on the model
complexity and solution quality. An initialized heuristic is
proposed to determine both the hyperparameter and initial
solutions of the model.

Algorithm 1: Initialized Heuristic for the ILP Model

1 function model_initialize_solution(¢, &)
Initialize L <+ {1} and H; <— 1 for j € J ;
while > ; H; # |H| do
' argmax;e ; {3 &ij - bi/Hj )
H]-/ — Hj’ +1;
end
while frue do
Let C be a |L|x |H| matrix, W be a |L|x 1 matrix;
res < recursive (max;eg ¢;, ¢, 1, L, H,C,W);
if res = success then
| break;
end
L+ LU{|L|+1}

e e N A s W N

e
N =2

—
w

end
15 return C, W, L
16 end

[
N

The pseudo-code of the initialized heuristic presented in
Algorithm 1 consists of two parts. The head nozzle assignment
result is determined in the first part (line 2~6), i.e., the number
of available heads H; of nozzle type j under the condition
that minimizing the number of cycles without nozzle change.
After that, the algorithm recursively searches for a feasible
solution by adding the placement points of the cycle group
set L (line 7~14). The heuristic findings workload results W,
and component assignment result C;;, offer the initial solution
of the model, i.e., Equation (12).

w, =W, leL.,heH. (12)

The recursive function is implemented as shown in Algo-
rithm 2, which is to iteratively distribute components in a non-
decreasing order of points, following the cycle group index.
There are three possible cases for the return of the recursive
process. Except for success, which indicates an initial solution
has been found, fail indicates that the model is infeasible for
the given cycle group L, while backtrack indicates that the
current workload d for cycle group [ is unsolvable and another
try is executed to distribute a new workload d — 1.

uc,,ht =1

D. Complexity Reduction Strategies for the Model

When dealing with actual production data, the high com-
plexity of the model makes it difficult to obtain a high-quality
solution in a reasonable time. It’s necessary to appropriately
reduce the complexity of the model in accordance with the
features of PCBA, which focus on two aspects.

Algorithm 2: Implementation of Function recursive
1 function recursive(d, ¢, I, L, H,C, W)

2 if 1 > |L| and ;1 ¢; = 0 then

3 | return success;

4 else if d < 0 and |l = 1 then

5 | return fail;

6 else if d <0 or ! > |L| then

7 | return backtrack;

8 end

9 ¢ — ¢, H —H, W, <d, h+0;

10 for j € J do

1 while h < h+ 1;H; > 0 do

12 i’ + argmingc; {¢; | &j - ¢ > d};
13 Cin ', ¢y = ¢y —d, Hj  H; —1;
14 end

15 end

16 res < recursive(max;ct ¢i, ¢, 1+ 1, L, H,C, W);
17 if res = success then

18 | return success;

19 else if res = backtrack then

20 | return recursive(d — 1,¢’,1, L, H,C,W);
21 end
22 end

1) Limit the values of decision variables: As the feeders are
densely arranged in an area of the feeder base, slots farther
away from the PCB are always ignored. Only consecutive slots
with an equal number of feeders are valid, and we define the
leftmost valid slot as the reference slot, which is decided by
the component assignment and consists of the following steps.

Step I average a weighted sum of the assembly heads for
different types of components ¢ with its workload.

IR IE

leL heH

13)

Step II convert the x coordinate of all the placement points
to the position of the leftmost head and average the value.

fezx”_z’“%'hi'T (14)

P

where z,, and y,, are the x coordinate and the y coordinate of
placement point p, respectively.

Step I1I calculate the average number of slots that the heads
crossed by for the pickup process in one cycle on the feeder
base.

As + Z R {vsnt -

leL

(s—h-r+7r)|vsn #0,s€ S,h € H}
wy

15)
where R {-} denotes the range of the set.

Step IV determine the reference slot s*FF based on the head
pickup range (slots crossed by) and the average placement
position of the head.

Fl As+1
.r +

T 2

where s™! is the 2 coordinate of the leftmost slot on the feeder

base. The feeder slot for component type ¢ is computed from

the solution of the model and the reference slot position, i.e.,
SREF 4 Y oscs S fsin

J+1 (16)
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2) Reduce the range of feasible domains: The solution space
of the model is cut by adding constraints to further improve the
solving efficiency. Constraints (17)-(19) are not the necessary
condition for model solving and are utilized to reduce the
range of feasible domains further and round out inappropriate
solutions ahead of time.

Constraint (17) ensures that the lower cycle group has a
higher priority in picking up components with more PAP
cycles.

Vi e L\{|L[}

wp = Wit an

Constraint (18) gives the lower bound and upper bound of
the number of PAP cycles, where the upper one is given based
on the heuristic initialize algorithm. The heuristic solution W),
gives the worst case for the number of total PAP cycles without
nozzle change, and an optimal case is that all heads divide
components equally; two of these cases give the upper bound
and lower bound of cycle groups in Constraint (18).

[Z@/\HH < sz SZWZ

i€l leL leL

(18)

Constraint (19) presumes that all placement heads have
nozzles, even if they do not pick up and position components,
which helps to eliminate the unsatisfactory result. A general
case in Constraint (19) is that all heads are not empty, even if
they do not pick up any components.

ZZZ]'MZH‘[‘ VieL

heH jeJ

19)

E. Selection Criteria of Solution Pool

In general, the solution of the model is not unique, and
standard solvers can systematically search for a solution pool-
a collection of multiple optimal solutions. The model deter-
mines both the component assignment and feeder arrangement.
However, its objective function does not incorporate the pickup
movement, which leads to different pickup paths that have the
same objective values. It also does not take into account the
layout of the placement points, but its solution limits the set
of points that each head can access.

As there is insufficient information regarding the points and
sequence of heads placed, we propose a fast pre-evaluation
heuristic algorithm for selecting one result from the solution
pool. The assignment of the head task determines the path of
the pickup process as

.
E = 7ZwloR{1}Shl~(57h'7’+T)|Ushl7é03
T (20)

se€ S ,he H}

The placement points set for each head is constrained by
the component assignment of the model. For the placement
process, the first w; points of the component type » . ;% - win
are assigned to the head h, followed by the subsequent w;
points, and so forth. For each head in the cycle group, we
implement a route schedule for the centroids of the assigned
points, and the length of placement route movement is denoted
by Es. Out of all the solutions in the pool, the one with the
minimal E; 4 Ej is selected for the next phase of optimization.

[1l. ROUTE SCHEDULE HEURISTIC

The placement route scheduling problem has a wide solution
space, and heuristic algorithms based on expertise or rules
are appropriate and generally yield satisfactory results. On
the basis of the mechanical structure of beam-heads, we
propose greedy-based and random route relink heuristics for
the placement route schedule.

A. Greedy-Based Route Schedule Heuristic

The greedy-based route schedule heuristic consists of the
following steps.

Step I compute the x coordinate of left boundary « and
right boundary 3 of the PCB and repeat through the Step II
to Step VII with the search step 6 = (8 —«) /(2 |H|) and
three distinct search directions: from left to right (L—R), from
right to left (R—L), from center to edge (C—E).

Step II generate the starting point list S and head list 7{ -
linear sequences based on the search direction.

LoR:S={a+(h—1)-6|he H}, H=H.

RoL:S={8—-(h—1)-6|heH}, H={|H|+1—-h
|he H}. R

CoES={B-a+pB)/d+(h—1)-2/6 |hec H}, H =
{[1H] +1/2] = (~1)" - ([h/2] — 1/2) = /2| h € H}.

The head list H represents the order in which the different
heads are assigned to the search direction.

Step III repeat through the cycle index k € K, where K =
{1,2,---,%,c, wi} and initialize Py as a 1 x |H| array with
elements of -1, which represents the placement result.

Step IV repeat through search direction L—+R, R—L, C—E
with starting point © € S and head list 7.

Step V iterate through all the heads h € H. If h is the first
one, find the point nearest to the starting point in the horizontal
direction,

P argMiN, ¢ (| (p)=Cpn P} [T —ATR—O]  (21)

otherwise, sort the assigned placement points and calculate
the moving distance, where A7, = (h — 1) -7 and ¢ (p) is the
component type of placement point p.

X, {l‘fpkh, — A1y | Prn # 1,h € H} U {.I‘p}
yp — {y'th/ | 7Dk?h’ # 17h/ S H} U {yp}

Note ¢ is the index of X with the qth smallest coordinate of
x axis, and

(22)
(23)

Xp/ —1

P AIgMNy ¢ (), (pry=Cu P} D
qg=1
max (‘Xp’q — A (g+1) | D)p’q - yp’(q+1)’)

Step VI update the placement assignment result Pyp < p,
P < P\ {p}, go to Step V until Py, # —1,Vh € H.

Step VII dynamic programming for route schedule in each
cycle and storing the Chebyshev moving distance. The x
coordinate of the center point ® equals ), _,; xp,,/|H| and
its y coordinate equals the pickup position of the feeder slot.
The transfer equation is written as

F(D,{P})«0

(24)

(25)



IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. XX, NO. XX, XXXX

h'eH’
H CH

]-'(h,?:l/ + {h}) + min {]: (h/,’]:l/) +g(h,h,)}7 (26)

HU{®},he H
if h # ® and W/ # @,

g (h,h')=max (\mpkh —xp,,, —AThp

)

27)

’ |y'th 7y'th/

otherwise,

g (h,®) = max (|zp,, — Px — ATl |yp,, — Pyl) (28)

with final result equals min,, 4 {]—' (h, ?-2) +g(h, <I>)} .
Each head is associated with one placement position, and
the sequence in which the heads are placed is solved. The
placement sequence pair Q is formed by arranging the two
heads consecutively.
Step VIII compare the total moving distance and get the
placement assignment result with the minimal one.

Algorithm 3: The Flow of ARRH Algorithm

Input : component assignment C, placement assignment P,
placement sequence Q _
Output: reschedule placement assignment P and placement
sequence Q
1 calculate average position Ty, ¥, and moving distance Dy,
Tp ZheH‘Bth/ [HI, U 2p 17 YPy/ HI: Dy
Z(Qlﬂlz)EQk max ‘xpkql 7:”7’1@2? YPrqy ~ YPryy
in each cycle k, k € K = {1,2,«~~ 2 lel wl};
2 PP, QA+ Q;
3 while the terminated time has not been reached do
4 Pr < Pg,.n, wWhere ky < randomyc i (Dy), hr<—

randomp,e fy (max ( TP T Thy | > (YPy, Ty )) ;
5 ke <—argming ¢ g s 2, max (|2p, —Tpr |5 [Ypr —Yar|) 5
6 for h € H do

— Tpr —TPp p _ Ypr —YPp 1 _
7 T —r 0 tTY —Er - T
8 Up < maf((kvpr - f‘ ’ |ypr - yD 5
9 foreach ' € H\ {h} do
Up, < Up, + max (‘xpkrh’ - ) yPk»,-h’ 7@ )’

10 end
11 he + argmin up,,

¢ g he{h’|b(pT):L(PkCh/),h’eH} h

Pe < Prehe s

12 Prehe < Prs Prphy < Pe s

13 D;cc, Qp, < cycle_schedule (Pkc) s D;w, O, +—
cycle_schedule (Pkr) ;

4 | if Dy, + Dy, > Dj, + Dj then

/ /.
15 PP, Q<+ Q, Dy, < Dy, , Dy, < Dy _;
_ Tpc —TP, _ Ypc —YP, _
16 xkcg%ﬂkc’ykc%%wkc,
— Iprzpk h _ _ yp'rfypk h _
17 T —1m] Tk Yk TET T VRr
18 else
19 PP QA+ Q;
20 end
21 end

B. Aggregated Route Relink Heuristic

An aggregated route relink heuristic (ARRH) is proposed
for the placement route improvement, and its flow is shown

TABLE Il
BASIC PARAMETERS OF THE PCB DATA

T 2 3 4 5 6 7 8 9

V] r 1 1 2 2 3 2 3 3 4
c 1 2 3 4 5 5 6 71 8
216 288 352 432 384 336 198 170 196

P 400

in Algorithm 3. The primary principle of the algorithm is to
reallocate the off-center points in each cycle. The design of
the algorithm is based on the average position and moving
distance in each cycle (line 1). The cycle and its corresponding
off-center point are determined based on the moving distance
and offset, respectively (line 4). The swapping cycle, which
is nearest to the former off-center point, and the swapping
point are further determined (line 5~11). After performing
the relink operation (line 12), the distribution of the cycle can
be more concentrated. The proposed cycle_schedule relinks the
placement routes with a plain idea for search faster: sorting
the placement points non-decreasingly w.r.t. coordinate of x
axis and allocating them on the head from left to right.

Fig. 2. The experimental platform of a placement machine.

IV. EXPERIMENT RESULT
A. Experiment Setup

This article solves the model using Gurobi 10.0 and
Python 3.10 on the Intel(R) Core(TM) i5-11400 @2.60GHz
with 16G RAM. Five times of runs are implemented
with each PCB, and the average values are recorded as
the comparative metrics. The proposed two-phase PCBA
optimization (TPPO) is compared with four representa-
tive decomposition-based algorithms, including a compo-
nent placer optimizer (CPO) employed in industrial soft-
ware, hybrid genetic algorithm (HGA) [12], aggregated model
(AGM) [13] and cell division genetic algorithm (CDGA) [17].
The experimental platform of a self-developed placement
machine is shown in Fig. 2.

In Table II, which lists the basic parameters of the PCB
data, we select ten different PCB data; among them, the first
one is an international standard speed test data IPC9850; the
second to the fifth data with relatively fewer component types
and randomly generated placement points are applied to test
the generalization of the algorithm; the last five are selected
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TABLE IlI
THE PARAMETER SETTING OF THE TWO-PHASE ALGORITHM

TABLE IV
COMPARISON OF THE OBJECTIVES’ Z VALUE OF THE PROPOSED
MODEL WITH MAINSTREAM ALGORITHMS

Phase Parameter Setting
Coefficient T | T | T3 2132 PCB TPPO CPO HGA AGM CDGA
Big-M value |P| I -0.448 -0.448 1.789 -0.448 -0.446
1 Pool search mode Find multiple solutions 2 -0.845 -0.679 1.650 0.153 -0.279
Pool solution 30 3 -1.089 -1.089 0.677 0.603 0.898
Pool gap 10~4 4 -0.864 -0.318 -0.864 1.420 0.625
Terminated condition Unchanged in 30 seconds 5 -0.942 0.211 -0.942 1.461 0.211
Search step R ({zplp € P}) /1H] 6 -0.996 1.208 -0.840 0.883 -0.254
I Selection method Roulette wheel 7 -0.527 -0.370 -0.527 1.783 -0.360
Terminated time (sec) 10 8 -1.470 -0.104 0.238 1.331 0.005
9 -1.100 -0.936 0.763 1.147 0.127
10 -0.715 -0.431 -0.293 1.764 -0.325
AVG -0.900 -0.295 0.165 1.010 0.020

from the actual industrial sites, to validate the application of
the algorithm in practice.

The parameter settings of the proposed algorithm are listed
in Table III. In the first phase, we set the pool parameters and
search mode, as well as the coefficients of the model based
on the metrics’ impact on assembly efficiency. We specify the
following as the termination condition of the model-solving
process because it takes a long time to solve the model
completely: the currently optimal solution has not changed
for more than 30 seconds. The big M value for linearization
equals the number of placement points. The search mode is
set to prioritize the 30 best solutions within the gap of 10~
In the second phase, the search step is dependent on the PCB
layout, and the route roulette wheel is chosen for the random
search of route relink with the upper 10 seconds.

CPO

HGA [l AGM Il CDGA

4000 foo P P P P I I e . :

cycle

nozzle change

PCBI1 PCB2 PCB3 PCB4 PCB5 PCB6 PCB7 PCB8 PCB9 PCBI10

£300 |
~
Q
2150 |
PCBI1 PCB2 PCB3 PCB4 PCBS PCB6 PCB7 PCB8 PCB9 PCBI0
Fig. 3. The histogram of the sub-objectives comparison between the

proposed model and other mainstream algorithms.

B. Comparative Experiments

The sub-objectives of the PCBA process, which include
the number of cycles, nozzle changes, and pickup operations,
with the comparative histogram is shown in Fig. 3. It can
be seen the TPPO is more comprehensive than conventional
approaches. The cycle scheduling difficulties are better han-
dled by TPPO, AGM, and CPO, whereas evolutionary-based
CDGA and HGA typically have more PAP cycles. AGM and
HGA forbid changing the nozzle, which prevents some of the
simultaneous pickup operations from being carried out and

lowers the overall efficiency. Both TPPO and AGM are model
based algorithms; however, the former takes into account the
mechanical characteristics and has a greater pickup efficiency.
Table IV shows more general and comparable results of Z-
values for weighted sub-objectives that are directly related to
assembly efficiency. It can be seen that when dealing with a
single type of component data (PCB1), TPPO, CPO, and AGM
perform equally well. As the PCB becomes more complicated
with more component types, the TPPO outperforms other
mainstream algorithms, and there is also a tendency to increase
gaps between the proposed algorithm and other research.

Three test cases (TCs) are constructed to compare the
solving efficiency for different model settings in Table V. We
call the model with component partition, complexity reduction
strategies as the improved model and the model without the
proposed techniques as the original model. We utilize the
known optimal solution as a benchmark since it is hard to
find the optimal one to a NP hard problem for all PCBs.
The benchmark value O, of PCB1~PCB3 are the optimal
result for solving the original model. As the size of the data
increases, the original model cannot find an optimal solution
in an acceptable time. The solutions of PCB4~PCB10 are
obtained after solving the proposed model with a sufficient
amount of time (at least 6 hours) and without the terminated
conditions, which are also the best results from the proposed
and comparative methods.

The test cases follow the settings: TC-1 represents the
solution of the improved model; TC-2 represents the solution
of the improved model without the initial solution; and TC-
3 represents the solution of the improved model without the
complexity reduction strategies. The formula for the test case
t’s gap is G = (Oy/Op — 1) - 100%, t = 1,2,3. As can be
shown, the improved model’s highest gap from the benchmark
is 11.22%. The model-solving process can be quickly iterated
with the aid of the initial solution, and under the terminated
condition, the feasible solutions for PCB9 and PCB10 are not
even attainable. Even though, theoretically, TC-3 could achieve
better solutions, the model iterates more slowly in practice and
has a larger gap than the improved model under the terminated
condition.

The movement distance and assembly time are compared
next, as shown in Table VI. The notation D and T represent
the moving distance and assembly time, while the super-
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TABLE V
COMPARISON OF THE MODEL OBJECTIVE VALUE FOR DIFFERENT TEST
CASES
PCB1 2 3 4 5 6 7 8 9 10
BASE| O, 934 312 336 396 432 390 288 158 164 196
TC-1 O1 934 312 336 396 432 390 288 158 168 218
Gi 000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.44 11.22
TC Oz 934 312 336 396 432 390 288 162 - -
G2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.53 - -
TC3 O3 934 312 336 396 432 390 288 172 192 220
Gz 0.00 0.00 0.00 0.00 0.00 0.00 0.00 8.86 17.07 12.24

scripts 7', P, H, A, and C represent the TPPO, CPO, HGA,
AGM, and CDGA, respectively. AD and AT correspond to
the improvement rates of D and T, respectively, relative to
TPPO comparing with other research. D] and DI represent
the moving distance without and with route relink heuristic.
Since the route relink heuristic mainly adjusts the placement
movement that makes up a small portion of the whole, it does
not result in a high improvement in the overall movement.
For the TPPO method, the assembly process can be more
effective with fewer pickups and nozzle changes, even without
the shortest movement distance for PCB3, PCB4, and PCB7.
Compared to CPO, CDGA, AGM, and HGA, the proposed
method improves by 8.06%, 13.06%, 24.32%, and 24.31% in
assembly efficiency, respectively.

Lastly, we compare the solving time. CPO is not included
in the comparison since the specific algorithm has not been
disclosed. As shown in Table VII, compared with the TPPO,
we can conclude that the component partition is an effective
way to improve the search efficiency. The model without
component partition can only be applied in solving small-
scale data; for PCB1~PCB3, the solving time is 21.41, 70.18,
and 193.23 seconds, respectively, which is much larger than
the proposed model. As a modeling method, TPPO is solved
longer because of the inclusion of pickup constraints compared
to AGM, but it is significantly faster than HGA excepted
PCB10. Even though it requires more time for TPPO, its
assembly efficiency is higher, and the time is within an
acceptable amount.

V. CONCLUSION

This article presented a two-phase optimization approach
for handling the head task assignment and placement route
schedule after breaking the PCBA process down into two parts.
By optimizing the primary sub-objectives at the modeling
phase and developing heuristic algorithms at the route schedule
phase, the two-phase framework combined the advantages
of both mathematical model and heuristic algorithms. We
compared the weighted sub-objective, which was related to
the overall assembly efficiency, with both heuristic-based and
model-based algorithms. The results showed that the proposed
algorithms are more thorough than previous research. A series
of specialized test cases validated the necessity of the pre-
processing technique, including the component partition ap-
proach, initial heuristic, and reduction strategies, to solve the

model. Furthermore, we compared the moving distance and
assembly time with other research. Although the placement
path of our proposed algorithms was not the shortest for some
PCB data, it improved the assembly efficiency because of the
optimization in the first phase. The solving time of the two-
phase algorithm was within acceptable bounds, even though
it was not faster than all the compared algorithms because we
took more factors into account and searched a greater domain.
Overall, the experimental results showed that the proposed
two-phase optimization effectively solves PCBA problems,
balancing the quality of the solution and computational cost.
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