IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. XX, NO. XX, XXXX 1
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Abstract— Surface mount technology is essential to the
development of the electronic manufacturing industry. This
paper studies optimizing the surface mount process for the
beam-head placement machine. A mixed integer program-
ming (MIP) model is proposed for this problem which is
decomposed into three interconnected hierarchical parts:
feeder allocation, component assignment, and pick-and-
place (PAP) sequence problems. This paper proposes an
efficient hierarchical framework with three elaborately de-
signed heuristics to solve the above problem. The design
of the scan-based algorithms optimizes the sub-objectives
of feeder allocation and component assignment. Firstly,
the allocation heuristic arranges the feeders into slots as
a prerequisite for other problems. Then the component
assignment heuristic determines the component type for
each head with a variety of criteria and long-short term ob-
jectives. Finally, the PAP sequence problem is solved using
a modified beam search algorithm. The proposed algorithm
offers advantages in terms of effectiveness, efficiency, and
extension, which can satisfy various customization de-
mands. Experiments are conducted on our self-designed
placement machine using industrial and randomly gener-
ated data. Computational experiments show that the scan-
based heuristic algorithm obtains near-optimal solutions
with a gap of 9.93% averagely compared with the proposed
MIP model and provides efficiency improvement over the
mainstream studies.

Index Terms— PCB assembly optimization, hierarchical
decomposition, mixed integer linear model, scan-based
heuristic

[. INTRODUCTION

OWADAYS, the widespread use of electronic products in
modern life has raised attention to the price and quality
of printed circuit boards (PCBs). A complicated collection of
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Fig. 1. The layout of the beam-head placement machine.

production procedures makes up for manufacturing electronic
products. PCB assembly is one of the necessary but time-
consuming processes among them. The placement machine is
a sophisticated computer-controlled apparatus that integrates
mechanical, electrical, and optical techniques [1]. The factory
uses automatic manufacturing lines to produce high-quality
PCB, and the maximum production capacity of the placement
machine is the efficiency bottleneck of the whole production
line. The application benefit of an effective assembly optimiza-
tion technique is enormous.

This paper focuses on the beam-head placement machine,
which has a stationary PCB platform, two stationary feeder-
bases, and a moving gantry with beam heads, as shown in
Fig. 1. The feeders loading with components are installed
on the feederbase. There are three basic types of feeders for
assembling various package component parts: tape, stick, and
tray. The gantry moves between the PCB and the feederbase
to pick and place the components with vacuum valves. The
fly camera is equipped in the heads for chip detection; for
some large chips, the gantry moves to the fixed camera
for inspection. An auto nozzle changer (ANC) is kept with
multiple nozzle types to fulfill the assembly needs for various
component shapes. The primary distinction between the beam-
head placement machine and other types is its mechanical
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Fig. 2. The workflow chart of surface mount process.

design which enables multi-heads to pick up components from
feeders simultaneously.

As shown in Fig. 2, the surface mount process consists of
six different types of operations, and the dashed-line framed
part includes a PAP cycle, which is the fundamental unit. The
nozzle change, component pick-up, and component placement
operations in a PAP cycle take substantial time, and the algo-
rithm can optimize the first two operations. More specifically,
by combining multiple head motions, the pick-up operation
could be more effective, and the nozzle changes are connected
to the sequence of component pick-up. The The component
dumping operations caused by image processing errors are
exceptions and are not considered in this paper.

The surface mount optimization problem has multiple vari-
ables with significant coupling and is an NP-hard problem [2].
A general technique for this complex optimization problem
is the hierarchical decomposition method [3], [4]. This chal-
lenging combinatorial optimization problem is made up of
the location problem, assignment problem, and route schedule
problem. In the locating problem, the depots are feeders
assigned for the assembling process [5]. The assignment prob-
lems are concerned with determining the type of component
picked up by the placement head, which must take into account
the tool compatibility of the nozzle-component [6], [7] and
its influence on simultaneous pick-up [8], [9], both of which
are essential factors influencing assembly efficiency. The PAP
route schedule is covered in studies [10] and [11] utilizing
heuristic and mathematical programming, respectively.

Surface mount optimization has been solved by a variety
of algorithms, such as mathematical programming, evolu-
tionary algorithms, tailored constructive heuristics, etc. The
mathematical programming method is limited by the com-
plexity of the problem, and the subproblem is the subject
of multiple studies [12]-[14]. Medium-size problems can

be solved using mathematical programming combined with
the aggregation [6] approach and the augmented technique
for multi-objective [15]. Evolutionary algorithms have been
widely used in surface mount optimization problems [16]-
[20], such as the genetic algorithm, particle swarm algorithm,
shuffle leapfrog method, etc. Complex optimization problems
may have multiple sub-objectives, and research has been done
to combine multi-objective optimization with evolutionary
algorithms to find the Pareto fronts of the problems [21], [22].
Some studies provide constructive heuristics, which solve the
problem based on the struct of the problem and significantly
improve the quality of solutions [23].

To summarize, there is still a long way to industrial de-
ployments. Current research is flawed by irrational assump-
tions or inadequate examination of the factors influencing
assembly efficiency. The algorithm needs to be constructed
to work in various application scenarios. In this paper, we
propose a mathematical model and a novel hierarchical scan-
based heuristic framework for the surface mount optimization
problem. The contributions of this paper are summarized as
follows.

1) A mixed integer model for the PCB assembly process
is proposed. The model fully incorporates the factors
affecting assembly efficiency and decomposes the as-
sembly process into pick-up and placement parts. The
pick-up model takes into account the impact of simul-
taneous pick-up on efficiency for the first time, and the
placement model is modeled as a variant of the multiple
traveling salesman problem (MTSP).

The hierarchical decomposition approach reduces the
complexity of the problem. Based on the problem
characteristics for each subproblem, three elaborately
designed heuristics combined with the scanning concept
are proposed, which can obtain a nearly optimal solution
and perform better on the search efficiency compared to
other approaches.

The proposed algorithms demonstrate substantial ex-
tensions, which are adaptable enough to satisfy the
operators’ various customized requirements. The algo-
rithm optimization process simulates the pick-up pro-
cess, which can be adapted to the actual situation of
the feeder allocation and component pick-up operation
tasks.

The remainder of this paper is organized as follows: Sec-
tion II presents a mixed integer mathematical model, and Sec-
tion III proposes a scan-based hierarchical heuristic algorithm
to provide a satisfying PCB assembly solution. In Section IV,
the experiment results are introduced and compared with the
mainstreaming study.

2)

3)

[I. MATHEMATICAL MODEL
A. Problem Description

The surface mount optimization is to solve the scheduling
problem of the PCB assembly process and get an efficient
solution with complicated constraints and multiple decision
variables. The typical sub-problems of the assembly process
are the feeder allocation problem and the head-task assignment
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problem. The former solves the problem of the arranged slots
of feeders, while the latter determines the assembly sequence.
The component assignment problem and the PAP route sched-
ule problem are further decompositions in this paper for the
head task assignment. There is a progressive relationship
between the two sub-problems, and the complexity of the
problem can be reduced by determining the component type
and then the placement point of each head.

The underlying sub-problems are tightly coupled. The
feeder allocation affects component assignment for maximiz-
ing the number of simultaneous pick-ups, i.e., combining more
pick-up operations. The pick-up slots of the assembly process
and the assembly sequence determine the overall movement
distance of the gantry. There may be redundant movements
for pick-up operations and nozzle changes for the consistency
of the nozzle type, component type and feeder slot.

This work makes the following assumptions about the
optimization problem with litter impact on the optimality of
the solution.

o The X- and Y-axis motor movement is simplified to an
independently controlled trapezoidal profile.

o The interval distance between adjacent heads is integer
times the interval distance between two adjacent feeder
slots.

e Only an appropriate type of nozzle can pick up the
component.

o The ANC configuration is predetermined, and the move-
ment at different holes is ignored.

o Tray and stick feeders have predetermined arrangements
and are not incorporated into the optimization process.

B. Optimization Objective and Constraints

The surface mount process is accomplished by a complex
series of motions that work together. The target of minimizing
the assembly time depends on the distance of the gantry
traveling, the number of pick-up operations, and the number
of nozzle change operations which are the sub-objectives. The
coupling of sub-objectives is reflected in combining the pick-
ups of multiple heads may bring additional nozzle change, and
the distance of the gantry traveling relies on the pick-up and
nozzle change operations.

The constraints for surface mount optimization problems
can be divided into four categories: job completion constraint,
mechanical restriction, tool requirement, and artificial con-
straints. Job completion is essential for surface mount tasks,
and each component must be assembled accurately on the
corresponding PCB pads. The mechanical restriction concerns
the structural characteristics of the placement machine, such
as each head having unreachable pick-up slots. Another type
of mechanical constraint is positional interference caused by
feeders occupying multiple slots. The restricted number of
nozzles and feeders available will also impede optimizing
assembly efficiency. Tool consistency is a critical assurance
for the assembly process. In terms of artificial limits, operators
may want to pre-arrange feeders, prohibit some feeder slots,
and set prohibited heads.

TABLE |
SUMMARY OF NOTATIONS
Notation Description
” 1€l index of comp. type, I = {1,2,---}
3 jedJ index of nozzle type, J = {1,2,---}
8 PgeEP index of (placement) point, P = {1,2,---}
g hl€H  index of head, H = {1,2,---}!
5 acA index of arc, A = {(h,l) |h # I, h,1 € H}?
B keK,K' index of cycle, K = {1,2,---}, K’ = {k|gy > 0}
s,r €S index of slot, S = {1,2,---}?
te the average moving time of round trip between PCB
and feederbase
tn the average time of nozzle change operation
tp the average time of pick-up operation
tm the average moving time on the feederbase per slot
E i the compatibility of comp. type ¢ and nozzle type j
Q Nip the correspondence of comp. type ¢ and point p
g [ the number of points of comp. type ¢
ohj bi the feeder number of comp. type % available
¢ the number of nozzle type j available
/\5 kv,‘{ the moving time from feederbase to the first point in
cycle k
qu]& the moving time between point p and point g along
with arc a
)\fk‘/}f the moving time from the last point to feederbase in
cycle k
P the interval distacne between adjacent heads
T the interval ratio of adjacent heads and adjacent slots
M a sufficiently large number
gk binary var. = 1 iff at least one point is picked up and
placed in cycle k
U integer var. the pick-up moving slot of cycle k&
s dp, integer var. the number of nozzle changes of head h
% esk binary var. = 1 iff component is picked up from the
£ equality slot s in cycle k
= fsi binary var. = 1 iff comp. type 7 is assigned to slot s
g Tiskh binary var. = 1 iff head h picks up comp. type ¢ from
:g slot s in cycle k
A Wpgka binary var. = 1 1ﬁ point p is placed after point g
along with arc a in cycle k
Ypkh binary var. = 1 iff point p is the first point placed
with head h in cycle k
Zpkh binary var. = 1 iff point p is the last point placed

with head h in cycle k

! The head set H is the subset H, which contains the heads that can pick
up components from slot s, Hs = {max(1,—|(s—1) /7] + 1), -,
min (|H[, [(|S| = s+ 1) /7]) + 1}

2 The arcs of A represent the placement sequence of the heads. Ay, A{L
and Az are subsets of A, where Ay, has the arcs of A that pass head h,
A{L has the arcs of A from head h, and A}I has the arcs of A to head h.

3 5’ is the set of equality slot index, which refers to the left-most head
aligned slot, 8" = {—7 - (|H| - 1)+ 1,---,1,2,--- ,|S|}

4 The intermediate continuous variables vpq, np, and my are used to
eliminate subtour.

C. Mixed Integer Programming Model

Mathematical programming methods to solve the surface
placement task must deal with the problems of numerous
decision variables and intricate constraints. The route schedul-
ing of the gantry is constrained by the type of component,
nozzle, and slot that corresponds to each head, which greatly
increases the complexity of the model. This paper proposes
a hierarchical mixed integer programming model to solve
the problem effectively by decomposing the surface mount
process into two parts: the pick-up model and the placement
model. The pick-up model is a prerequisite for the solution of
the placement model, which determines the movement time
parameters and the placement head task in the placement
model. The notations of the proposed model are shown in
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Table 1. The table describes the type of decision variables, all
of which are non-negative.

1) Pickup Model:

minte Y grtte Y ditty > > et tn Y up (1)

keK heH seS’'keK keK
gk > g1 Yk € K\ {|K|} )
sziskhggk Vke K,he H 3)
i€l seS
SN wijwin <1 VheKheH (4
jeJ i€l s€S
SN wian = Viel (5)
s€eS heH keK
1
dh =5 > (Z’ZZMU iskh — Y Y
keK\{|K|} jeJ i€l seS i€l s€S (6)

Hij '%‘s(k+1)h’ - 1) Vh e H

esk < Z Z Li[s+(h—1)-T]kh <M-eg Vse Slvk eEK

i€l heHg
(7)
up > s-esp—71-e, Ve K,s,rel (8)
f <Y D mgn <M-fy VseSiel (9
heH keK
Y fi<1 VseSs (10)
i€l
SIS hij i <G VeeKjed (D)
heH icl ses
> fi<e Viel (12)

seS

The objective of the pick-up model (1) consists of four
terms: the number of cycles, nozzle change operations, pick-
up operations, and pick-up moving distance, where the pick-
up moving distance is represented by the number of slots
the gantry crosses over. Constraint (2) ensures that the first
few cycles of the surface mount process are given top priory
for completion. The heads and work cycle are consistent with
Constraint (3). Constraint (4) ensures each head is equipped
with at most one nozzle type. The completion of the surface
mount process for each component type is guaranteed by
constraint (5). Constraint (6) calculates the number of nozzle
changes of each head, and constraint (7) converts the pick-
up slot of each head to the left-most head to calculate the
number of the pick-up operations in each cycle. Constraint (8)
calculates the number of slots crossed over by the gantry for
the pick-up process in each cycle. Constraint (9) ensures the
consistency of head pick-up operations and feeder allocation.
Constraint (10) ensures each slot is assigned at most one
feeder. Constraint (11) and (12) indicate the limited number
of available nozzles and feederbase, respectively.

2) Placement Model:

min {0 A o+ Y3 YA

k€K' pePheH peEP qgeP acA (13)
it + 30 3 N 2
pEP he H
DD Weake =D D hip Tiskh
qEP acAy i€l ses (14)
VpePkeK hecH
3D wpra <2 VEE K ,heH (15
pEP qeP a€Ay,
S Wpkn +zpn) <1 Vke K'he H  (16)
peEP
Z Z Wypka + Ypkh = Z Z Wpqka + Zpkh
qEP ac At quaEA{L (17
Vke K',he HpecP
ooh < DY Wpra VK EK hEHpeP  (18)
quaGAfi
2k <Y > Wgpka VEEK' heHpeP  (19)
qEP ac Al
SN ypn=1 VkeK' (20)
pEP heH
S zn=1 Vke K QD
peEP he H
Z Z Ypkh + Z Z Wpgka | = 1 Vp epP 22)
keK’ \heH qgEP acA
ST zrn+ DD wgpka | =1 Vpe P (23)
k€K’ \heH qEP acA
mp—i—vaq—np—qupzl Vp e P (24)
qeP qeP
Upg < Z Z(‘P‘_lK/|+1)'wqua Vp,ge P (25)
keK’ acA
np < > Y (Pl = |K'|+1) - ypkn VpEP  (26)
ke K’ heH
my< > > (1P| = |K'[+1) zpen ¥pEP  (27)
keK’' heH

The objective of placement model (13) is the total of the
moving times except for the pick-up movement, which has
been solved in the pick-up model. The parameters of moving
time A in the objective are obtained based on the solution of
the pick-up model. Constraint (14) ensures that the solutions
of the pick-up model and the placement model are consistent.
Constraint (15)—(16) ensure each head is placed at most one
placement point. Constraint (17)-(19) ensure the continuity
of the placement task, i.e., the placement head is unique for
each point. Constraint (20) and (21) mean that the path of the
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placement head from the feederbase to the PCB and from
the PCB back to the feederbase is unique for each cycle.
Constraint (22) and (23) ensure the entry edge and the leave
edge of each point are unique, respectively. Constraints (24)—
(27) are utilized to eliminate the subtour for each cycle.

The pick-up model (1)-(12) and placement model (13)—(27)
involve an assignment problem and a restricted MTSP prob-
lem, which are two well-known NP-hard problems. Therefore,
the proposed model above can be solved only for small-scale
data in a reasonable amount of time. In Section III, we will
further decompose the problem following the optimization
objective, and an efficient hierarchical framework will be
proposed to solve this problem.

1. HHERARCHICAL HEURISTIC OPTIMIZATION
A. Scan-based Heuristic Hierarchical Framework

————

Sub-Objectives |

Feeder Allocation
Problem

Simultaneous
Pickup

PAP Route Schedule
Problem

Fig. 3. The relationship of surface mount process optimization sub-
objectives, sub-problems, and constraints.

Hierarchical decomposition is a common method for solving
complicated optimization problems. A direct solution to the
whole problem may bring on a dimensionality disaster because
of the numerous constraints and decision variables. It makes
sense to design the algorithm by the relevance of the sub-
objective. The constructive scan heuristic algorithm [5] is the
basis of the proposed method in this paper, which overcomes
the shortcomings of the lengthy solving time and greedily
maximizes the pick-up efficiency.

This paper decomposes the surface mount optimization
problem into feeder allocation problem, component assign-
ment problem, and PAP sequence problem. We prioritize
feeders since ignoring them will significantly increase pick-
up operations and longer moving routes. Furthermore, if the
feeder arrangement must be changed each time the PCB
changes, the labor cost associated with re-optimizing the
algorithm could increase. PAP route schedule is the final
subproblem to be solved since the moving distance of the
placement heads has less impact on assembly efficiency than
other factors.

The relationship among sub-problems, sub-objectives, and
constraints is shown in Fig. 3. The feeder allocation and
component assignment problems impact the nozzle changes
and simultaneous pick-ups, while the route schedule problem
is relatively independent. It can be expected that there are
certain similarities in the algorithm design of feeder allocation
and component assignment. The superscript NZ, CP, and PT of
the notations in the algorithm description are the abbreviation
of nozzle type, component type, and the number of placement
points, respectively.

Algorithm 1: Feeder Allocation Heuristic
Input : PCB data, component data, feeder data, nozzle
pattern N
Output: feeder assignment F CP and FPT
1 Initialize FEF as the component type pre-arranged on the
feederbase (-1 for empty), F PT as the number of the
placement points, and S as an empty stack;

2 while >, ;¢; #0 do

3 Initialize V}, <— 0 as the best allocation value;
4 for s« 11w |S|—(|H|—1)-7 do
5 foreach s’ = s+ (h—1)-7,h € H do

HCP (h) H}'CP (s/) ,HPT (h) H}'PT (s/);
6 I'—1;

7 for j « N (), h € {W'[HET (1) > 0} do
8 if s = 0,Vi € {i'|¢;; #0,i’ € I'} then
9 | push i < argmax; s {¢y} into S ;
10 else

14— argmax;/ ¢y {wi/’j “&iry > O}
HOP (h) i HET (h) s

12 end
13 I' + 1"\ {i};
14 end
15 Pop components from S and assign them to the
heads h e {W/|H"T (') = 0} ;
16 it X peyg HYT (h) >V, then
17 Vo Spen HET HET « 1T,
HEP —HOP 5y — s
18 end
19 end

2 5:min{H{fT (h) [HET () ;Ao,heH} :
21 for s’ < s, +(h—1)-7, h € H do

2 if }'PTlgs') = —1 then

23 ‘ FC (s’) <—’HbCP (h) ;

24 end

25 FPT () = FET (s) = 65

26 N (h) < j,1b; + ; — & where i = HE'T (h),
Jj= Zj’er/ &3

27 end

28 end

B. Feeder Allocation Heuristic Algorithm

Feeder allocation is a prerequisite for other subproblems,
and an appropriate arrangement will significantly enhance
pick-up efficiency, which determines the component pick-up
slot. The basic idea of feeder allocation heuristic described
in Algorithm 1 is assigning the feeders while scanning the
feederbase under the constraint of the nozzle pattern, which
can maximize the number of pick-up points allocated in a
round and avoid nozzle change. The algorithm assigns feeders
to the empty slots in the different rounds, reserving the com-
ponent types already arranged in the head-aligned slots. The
component types that can be allocated in the head-aligned slots
are determined by the nozzle pattern. The nozzle pattern helps
to reduce the number of nozzle changes for subsequent pick-
up operations. The type of component with more placement
points that do not meet the nozzle pattern restriction is stored
in component stacks to guarantee a comparably concentrated
position of the feeder allocation. At the end of the assignment,
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the algorithm assigns components in the stack to slots.

C. Component Assignment Heuristic Algorithm

The algorithmic framework for feeder allocation and com-
ponent assignment is similar, and both are based on heuristic
scanning. The feeder allocation solves the problem of compo-
nent pick-up position, and the component assignment solves
the problem of pick-up sequence. The scanning heuristic
efficiently optimizes the simultaneous pick-ups, which signifi-
cantly reduces the overall pick-up operations by integrating the
pick-up operations of multi-heads. Similar to feeder allocation
produces, each head aligns to a slot starting from different
pick-up slots, the component assigned to the head should
satisfy the following criteria:

Algorithm 2: Component Assignment Heuristic
FCP FPT

Input : PCB data, feeder allocation and
Output: component assignment C and cycle group KC

1 Initialize a 1 X |H| matrix M of None as the initial nozzle

assignment;

2 while 3, FF7 (s) #0 do

3 Initialize V}, <— 0 as the best assignment value;

4 for N e M, s+ 110 |S|— (|H|—1)7 do

5 for h € H do

6 s/<—s+(h—1)r,i<—}'CP(s');

7 Calculate v < eq - v1 — eg - v9 Where v| =

ming e g {HPT > 0} {]—'PT },
= ZhIEH ‘N (h/) - E : €HPT(h’)~j"
8 lf]-'PT()>Oandv>0then
9 HOP (h) « FOP () ;1T ()
_FPT( ),
10 end
11 end
12 Calculate short-term objective Vs and long-term
objective V; with Algorithm 3;
13 ife-Vi+(1—¢e) Vs>V, then
14 Ve Vi+(l—e) Vs, sp 4 s;
is (HET HET HYZ) — (MPT 1O UV
16 end
17 end
18 k < mingcpy {HZIJDT (h) > 0} ;
19 foreach h € H do
s sy (h—1) -7, FPT () « FPT (') — k ;

w | if HT (h) > 00r FPT (s) = 0,Yh € H,s € S then
21 Attach HbCP to C, HéVZ to M, k to K along with
column direction ;

22 end
23 end

1) Pick-up Feasibility: The head-aligned slot contains un-
picked placement points.

Pick-up Constraint: The head-equipped number of noz-
zles does not exceed the number available.

Pick-up Prejudgment: The component being picked up
does not lessen the number of subsequent simultaneous
pick-ups of the prejudgment.

Pick-up Objective: The efficiency gain from pick-up
outweighs the efficiency loss from nozzle change.

2)

3)

4)

Algorithm 2 describes the implementation of the component
assignment. Each round determines the type of component
assigned to heads with unpicked placement points and the
related cycle groups. A “cycle group” is a set of consecutive
PAP cycles with the same component assignments. It should
be mentioned that the scanning-based pick-up procedure tries
to maximize the number of simultaneous pick-ups while
minimizing the expense of nozzle changes. The component
assignment heuristic is forward-looking, which means that
the single-head component assignment prejudges its impact
on subsequent assignments. This is principally reflected in
the following two aspects: the first is to assign just those
components that improve the overall objective, and the second
is the long-short term objectives. As for long-short term objec-
tives implemented in Algorithm 3, the long-term objective is
to simultaneously pick up components from all aligned slots
until one is empty, while the short-term goal is to pick up
all components from the aligned slots greedily. The current
component assignment result is the short-term objective, and
its effect on pick-up efficiency as a whole is the long-term
objective. The long-short term objective is the weighted sum
of these two.

Algorithm 3: Long-short Term Objective Calculation
HFT

Input : Head Component Assignment
Output: short-term objective Vs and long-term objective V
1 Initialize short-term objective Vs <— 0 and long-term
objective V; < —eg -0 ;

2 Vs<e1-w-mingcy {HPT (r') > 0} — eg - 0 where
w=H| = [{W[HPT () > 0,0 € H}| - 1 and
o= pen W (W) = Xjerd - &ucrun.;

3 while #57 (h) > 0,3h € H do

: PT /

4 Vl<—Vl+el‘w~m1nh/€H{H (r") > 0 where

w e [H| = | {57 (1) > 0,0 € H}’ —1;

5 HPT — HPT — minhleH {HPT > 0}

6 | foreach h' € Hdo H"” (W) Y c;i- ECP(nry.

s

s

7 end

D. PAP Sequence Heuristic Algorithm

The pick and placement routes schedule make up the PAP
route schedule problem. In the case of the feeder allocation and
component assignment are determined, the pick-up procedure
calls for picking up components from each preset slot in a sin-
gle direction on the feederbase. Algorithm 4 shows the process
of beam search, which is utilized to solve the placement route
schedule problem by retaining multiple potentially optimal
solutions based on greedy search. The placement process
can be thought of as a constrained vehicle route schedule
problem with capacity constraints and candidate placement
points constraints imposed by the component assignment.
The dynamic programming is employed to determine the
placement sequence in each cycle, which is efficient with a
limited number of placement points.
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E. Extension of the Proposed Algorithm
The proposed algorithms show significant applicability ex-
pansion. First, the algorithm may balance the nozzle change w ; -
and pick-up operations cost by modifying the parameter S - \is ., N\
weights. Second, regardless of the number of linear-aligned il = —— __
heads, the technique may be utilized to achieve simultaneous -—'_’r_s —& P
pick-up. Even though the adjacent interval distance ratio be- '
tween heads and slots is not always an integer, the approximate
value also improves productivity by shortening the pick-up
distance of the gantry. Finally, since the algorithm implemen-
tation is essentially a simulation of the picking process, it can
be fine-tuned to offer a tailored solution, including but not ] )
limited to pre-assign feeders, assigning nozzle to head, and Fig. 4. Experimental platform of the placement machine.
prohibiting feeder slots. TABLE II
THE COMPARISON OF THE PROPOSED ALGORITHMS AND THE MIP
Algorithm 4: PAP Sequence Heuristic MODEL
Input : PCB data with coordinate (Xp,Y)) of point p, Scale Objective value Comput. time
Outout ;oAr;ponent assi%nment C and K PCB (N,C,P) Tscan  Tmip  Gap (%) tscan tmip
utput: sequence
1 Initiglize B= {?, 2,---, [} as beam set where (3 is the -1 (1,1,14) 4735 4.408 742 0.29 32360
beam width ; 12 (2,1,14) 4314 3833 1255 034 3403
2 Initialize P, Py as empty matrix and 7 as 1 x |H| matrix, 1-3 (3,2,16) 4.095 3.886 5.83 020  984.10
vb GCBP; 14 (4,2,20) 4720 4165  13.33 027 1117.84
i o 7véhile i Sé (I)C EOIC do 15 (5,3,24) 5793 5.170 12.05 0.48  718.44
5 Initialize B x 2 matrix W as the coordinates of the 16 (6,3,26) 6.257  5.773 8.38 0.59  5445.63
[ leftmost unplaced points ; AVG 9.93
6 for h € H do
7 Select 8 points which nearest to W(b), Vb € B
with component type H'(h) ; As the size of the problem increases, the model becomes less
8 Select 3 points among ,52 candidates with capable of solving the small-scale data in Table II. However,
0 end minimal Chebyshev distance as p, -~y ; the solving efficiency of the proposed heuristic algorithms is
10 k< k— 1, Wy [Xp,, Yp, — (h—1)-p], substantially better than mathematical planning methods with
Ty (h) < pp, Vb € B ; an optimality gap of 9.93% average.
11 PAP sequence schedule for 7 using dynamic Secondly, we use several industrial PCB data, including

programming and attach 7, to P}, with column
direction, Vb € B;

12 end
13 end
14 P < P, with minimal Chebyshev distance Vb € B ;

V. EXPERIMENT RESULT ANALYSIS

The algorithms proposed in this paper are implemented in
Python 3.8 by a desktop computer with Intel Core i7 1.8-
GHz CPU and compared with aggregation mix integer pro-
gramming (AMIP) [6], hybrid genetic algorithm (HGA) [9],
cell division genetic algorithm (CDGA) [18], and optimizer
integrated with an industrial software (ISO). Both HGA and
CDGA are representatives of evolutionary algorithms for
assembly optimization. AMIP, a mathematical programming
technique combined with an aggregation technique, could
optimize medium-sized data in an acceptable amount of time.
All mathematical models mentioned in this paper are solved
using the optimizer Gurobi [24].

Firstly, we compare the proposed algorithm with the optimal
solution of the mixed integer model, as shown in Table II.
Based on the production result, the coefficients t., t,, t,, and
t,, of the MIP model are set to 2, 6, 1, and 0.1, respectively.

a randomly generated complex one as representatives, to
compare the result of different methods. The latter can be
equated to a multi-batch PCB assembly scenario without
feeder setup change. The comparative PCB data parameters
are shown in Table III. According to the machine parameters,
we set e = 0.5, e; = 4 and eo = 0.6 in the implementation
of the heuristic algorithms. We set the size of the beam in
the beam search to half the number of placement heads. This
research investigates the effects of the optimization technique
without feeder pre-arrangement since AMIP, HGA, and CDGA
cannot deal with pre-arrangement conditions, and AMIP and
HGA can only optimize single feeder type. The experiment
findings indicate the suggested approach, ISO, AMIP, HGA,
and CDGA, respectively, as E (i = 1,2,3,4,5). The perfor-
mance improvement of the suggested approach over other
methods is represented by the AE?, which is computed as
AE! = (E1 — El) JEY x 100%,i = 2,3,4,5.

This paper compares the main sub-objective values of
optimization methods results with each other as shown in
Table IV. The number of PAP cycles is one of the overall
performance sub-objectives since, in some cases, it may affect
the distance of the moving route. The method proposed in this
paper exhibits more effective search capabilities when dealing
with complex data.
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TABLE IlI
PCB DATA PARAMETERS
PCB  2-1 22 23 24 25 2-6 27 2-8
N 1 1 2 3 3 3 3 4
C 7 18 6 7 16 20 24 41
P 564 176 72 192 114 150 236 1510
TABLE IV
SUB-OBJECTIVE COMPARISON
PCB ISO AMIP HGA CDGA OUR
2-1  94,0,4441 950490 420,0444 94,0432 950,490
2-2 30,0,56  30,0,115  36,0,54 40,0,86 30,0,52
2-3 16,0,22 16,0,48 16,0,16 16,0,24 16,0,22
2-4 32,1,74  38,0,122  64,0,80 48,0,80 32,1,64
2-5 20,0,37 20,0,78 24,0,30 24,0,30 20,0,30
2-6 26,2,98 32,294 33,0,108 81,3,84 32,0,96
2-7 42,1,68 - 46,0,62 444,102 450,64
2-8  290,9,552 - 370,0,425 280,9,812 288,2,440

! The comma-separated values represent the sub-objectives of the
number of cycles, nozzle changes, and pick-ups, respectively.

Algorithm verification is done on our placement machine
platform, which is shown in Fig. 4. We convert the assembly
time into the standard time-chip per hour (CPH) to provide
a straightforward comparison independent of the number of
placement points. A batch of PCBs is subjected to each pro-
cedure three times, and Table V shows the average assembly
time. Even though the proposed algorithm does not signif-
icantly outperform the industrial customize optimizer results
for small and medium-sized data, its advantages become more
evident as the size of the problem increases. The assembly
efficiency distribution shown in Fig. 5 shows that the proposed
algorithm is more stable than others.

The search efficiency is compared with other methods in
Table 5 except for the built-in industrial customize optimizer.
It can be seen that evolutionary-based algorithms take a longer
time to find a solution, and the results are usually unstable due
to their random exploration. AMIP is still intractable for large
scale PCB-data, despite the efficient aggregate-based technique
incorporated.

The feeder allocation has a pivotal impact on the overall
assembly efficiency, but only some researchers elaborate on the
solution to the feeder types with different widths. We conduct
comparative tests with PCB data using different width feeders
to compare the suggested approach with the ISO method.
According to Table VII, the proposed method provides a
7.60% overall efficiency gain over the industrial customize

TABLE V
CHIP PER HOUR FOR DIFFERENT METHODS

ISO HGA
AE? E* AE*
0.37 7035 60.35
0.35 14958 7.36
3.78 12191 2.13
6.13 9795 39.43
272 9932 34.67 12346 8.34
10.97 8843 4591 10457 23.39
792 - - 12087 7.92
1455 - - 11781 15.08
5.85 39.49 20.50

OUR
El
11297
16058
12451
13658
13375
12903
13043
13557

AMIP
E3 AE3
6991 61.60
11460 40.21
9231 34.88
11404 19.76

CDGA
E5 AES
10673 5.84
12462 28.86
11759 5.88
10423 31.03
11372 17.62
7556 70.76
9830 32.69
10477 29.40

27.76

E2
11255
16003
11998
12869
13022
11627
12087
11835

PCB
2-1

2-3
2-4
2-5
2-6
2-7
2-8
AVG

15000 . - T T T
13500 | 13608(75% .
o g 1294605%)
@ 12000 - 12268(75%) i
g % 1731(25%, 11404759 11565(75%,
; 10500 - B
=) 10126(25%]) 10127(25%
=
g
< 000r 8843(25%) )
o
)
& 7500 | X 1
X X
6000 1 1 1 1 1
OUR ISO AMIP HGA CDGA
Fig. 5. Mounting time(CPH) distribution.
TABLE VI
TIME-CONSUMING OF DIFFERENT METHODS
PCB AMIP HGA CDGA OUR
2-1 1.54 646.96 221.27 3.93
2-2 0.83 159.27 23.61 2.31
2-3 0.66 29.93 4.37 0.73
2-4 1.26 136.48 6.30 1.05
2-5 2.83 82.18 13.97 1.17
2-6 13.92 129.21 20.74 347
2-7 - 215.43 40.06 5.20
2-8 - 635.00 171.89 23.25
AVG - 94.21 204.65 11.93
optimizer.

V. CONCLUSION

The scan-based hierarchical heuristic algorithm demon-
strates excellent performance and efficient search in solving
the complex surface mount optimization problem. We propose
a mixed integer mathematical model and elaborately designed
heuristic algorithms. The component pick-up procedure in-
spires the techniques of feeder allocation and component
assignment with linear-aligned heads. While the component
assignment heuristic algorithm concentrates on multi-head
pick-up, the heuristic feeder allocation approach emphasizes
feeder allocation, increasing simultaneous pick-up numbers.
The ultimate goals of both algorithms are to improve pick-up
efficiency and decrease nozzle change. In this work, beam
search is used to improve the search quality of the PAP
route schedule. In terms of extension, the algorithm analyzes
the requirements in various application scenarios and gives
supporting solutions to be indeed applied to industrial produc-
tion environments. The experiments compare several previous

TABLE VI
CHIP PER HOUR FOR DIFFERENT METHODS WITH MULTI-WIDTH
FEEDERS
Parameter Objective value
PCB P C N E! E? AFE?
3-1 78 16 3 10912 10688  2.06
3-2 150 20 3 8493 8229 3.11
3-3 110 23 3 13001 12811 1.46
3-4 161 38 3 11143 8798  21.04
3-5 540 10 4 8416 7548 10.31
AVG 7.60
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research and an industrial optimizer, and the findings demon-
strate that the suggested technique considerably increases the
efficiency of placement machine assembly.
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