Files
smt-optimizer/optimizer_genetic.py
2023-08-03 19:33:43 +08:00

328 lines
14 KiB
Python

# implementation of <<An integrated allocation method for the PCB assembly line balancing problem with nozzle changes>>
import copy
import matplotlib.pyplot as plt
from base_optimizer.optimizer_common import *
def selective_initialization(component_points, component_feeders, population_size):
population = [] # population initialization
for _ in range(population_size):
individual = []
for part_index, points in component_points:
if points == 0:
continue
# 可用机器数
avl_machine_num = random.randint(1, min(max_machine_index, component_feeders[part_index], points))
selective_possibility = []
for p in range(1, avl_machine_num + 1):
selective_possibility.append(pow(2, avl_machine_num - p + 1))
sel_machine_num = random_selective([p + 1 for p in range(avl_machine_num)], selective_possibility) # 选择的机器数
sel_machine_set = random.sample([p for p in range(max_machine_index)], sel_machine_num)
sel_machine_points = [1 for _ in range(sel_machine_num)]
for p in range(sel_machine_num - 1):
if points == sum(sel_machine_points):
break
assign_points = random.randint(1, points - sum(sel_machine_points))
sel_machine_points[p] += assign_points
if sum(sel_machine_points) < points:
sel_machine_points[-1] += (points - sum(sel_machine_points))
# code component allocation into chromosome
for p in range(max_machine_index):
if p in sel_machine_set:
individual += [0 for _ in range(sel_machine_points[0])]
sel_machine_points.pop(0)
individual.append(1)
individual.pop(-1)
population.append(individual)
return population
def selective_crossover(component_points, component_feeders, mother, father, non_decelerating=True):
assert len(mother) == len(father)
offspring1, offspring2 = mother.copy(), father.copy()
one_counter, feasible_cut_line = 0, []
idx = 0
for part_index, points in component_points:
one_counter = 0
idx_, mother_cut_line, father_cut_line = 0, [-1], [-1]
for idx_, gene in enumerate(mother[idx: idx + points + max_machine_index - 1]):
if gene:
mother_cut_line.append(idx_)
mother_cut_line.append(idx_ + 1)
for idx_, gene in enumerate(father[idx: idx + points + max_machine_index - 1]):
if gene:
father_cut_line.append(idx_)
father_cut_line.append(idx_ + 1)
for offset in range(points + max_machine_index - 1):
if mother[idx + offset] == 1:
one_counter += 1
if father[idx + offset] == 1:
one_counter -= 1
# first constraint: the total number of '1's (the number of partitions) in the chromosome is unchanged
if one_counter != 0 or offset == 0 or offset == points + max_machine_index - 2:
continue
# the selected cut-line should guarantee there are the same or a larger number unassigned machine
# for each component type
n_bro, n_new = 0, 0
if mother[idx + offset] and mother[idx + offset + 1]:
n_bro += 1
if father[idx + offset] and father[idx + offset + 1]:
n_bro += 1
if mother[idx + offset] and father[idx + offset + 1]:
n_new += 1
if father[idx + offset] and mother[idx + offset + 1]:
n_new += 1
# second constraint: non_decelerating or accelerating crossover
if n_new < n_bro or (n_new == n_bro and not non_decelerating):
continue
# third constraint (customized constraint):
# no more than the maximum number of available machine for each component type
new_mother_cut_line, new_father_cut_line = [], []
for idx_ in range(max_machine_index + 1):
if mother_cut_line[idx_] <= offset:
new_mother_cut_line.append(mother_cut_line[idx_])
else:
new_father_cut_line.append(mother_cut_line[idx_])
if father_cut_line[idx_] <= offset:
new_father_cut_line.append(father_cut_line[idx_])
else:
new_mother_cut_line.append(father_cut_line[idx_])
sorted(new_mother_cut_line, reverse=False)
sorted(new_father_cut_line, reverse=False)
n_mother_machine, n_father_machine = 0, 0
for idx_ in range(max_machine_index):
if new_mother_cut_line[idx_ + 1] - new_mother_cut_line[idx_]:
n_mother_machine += 1
if new_father_cut_line[idx_ + 1] - new_father_cut_line[idx_]:
n_father_machine += 1
if n_mother_machine > component_feeders[part_index] or n_father_machine > component_feeders[part_index]:
continue
feasible_cut_line.append(idx + offset)
idx += (points + max_machine_index - 1)
if len(feasible_cut_line) == 0:
return offspring1, offspring2
cut_line_idx = feasible_cut_line[random.randint(0, len(feasible_cut_line) - 1)]
offspring1, offspring2 = mother[:cut_line_idx + 1] + father[cut_line_idx + 1:], father[:cut_line_idx + 1] + mother[
cut_line_idx + 1:]
return offspring1, offspring2
def cal_individual_val(component_points, component_nozzle, individual):
idx, objective_val = 0, []
machine_component_points = [[] for _ in range(max_machine_index)]
nozzle_component_points = defaultdict(list)
# decode the component allocation
for comp_idx, points in component_points:
component_gene = individual[idx: idx + points + max_machine_index - 1]
machine_idx, component_counter = 0, 0
for gene in component_gene:
if gene:
machine_component_points[machine_idx].append(component_counter)
machine_idx += 1
component_counter = 0
else:
component_counter += 1
machine_component_points[-1].append(component_counter)
idx += (points + max_machine_index - 1)
nozzle_component_points[component_nozzle[comp_idx]] = [0] * len(component_points) # 初始化元件-吸嘴点数列表
for comp_idx, points in component_points:
nozzle_component_points[component_nozzle[comp_idx]][comp_idx] = points
for machine_idx in range(max_machine_index):
nozzle_points = defaultdict(int)
for idx, nozzle in component_nozzle.items():
if component_points[idx] == 0:
continue
nozzle_points[nozzle] += machine_component_points[machine_idx][idx]
machine_points = sum(machine_component_points[machine_idx]) # num of placement points
if machine_points == 0:
continue
ul = math.ceil(len(nozzle_points) * 1.0 / max_head_index) - 1 # num of nozzle set
# assignments of nozzles to heads
wl = 0 # num of workload
total_heads = (1 + ul) * max_head_index - len(nozzle_points)
nozzle_heads = defaultdict(int)
for nozzle in nozzle_points.keys():
if nozzle_points[nozzle] == 0:
continue
nozzle_heads[nozzle] = math.floor(nozzle_points[nozzle] * 1.0 / machine_points * total_heads)
nozzle_heads[nozzle] += 1
total_heads = (1 + ul) * max_head_index
for heads in nozzle_heads.values():
total_heads -= heads
while True:
nozzle = max(nozzle_heads, key=lambda x: nozzle_points[x] / nozzle_heads[x])
if total_heads == 0:
break
nozzle_heads[nozzle] += 1
total_heads -= 1
# averagely assign placements to heads
heads_placement = []
for nozzle in nozzle_heads.keys():
points = math.floor(nozzle_points[nozzle] / nozzle_heads[nozzle])
heads_placement += [[nozzle, points] for _ in range(nozzle_heads[nozzle])]
nozzle_points[nozzle] -= (nozzle_heads[nozzle] * points)
for idx in range(len(heads_placement) - 1, -1, -1):
if nozzle_points[nozzle] <= 0:
break
nozzle_points[nozzle] -= 1
heads_placement[idx][1] += 1
heads_placement = sorted(heads_placement, key=lambda x: x[1], reverse=True)
# the number of pick-up operations
# (under the assumption of the number of feeder available for each comp. type is equal 1)
pl = 0
heads_placement_points = [0 for _ in range(max_head_index)]
while True:
head_assign_point = []
for head in range(max_head_index):
if heads_placement_points[head] != 0 or heads_placement[head] == 0:
continue
nozzle, points = heads_placement[head]
max_comp_index = np.argmax(nozzle_component_points[nozzle])
heads_placement_points[head] = min(points, nozzle_component_points[nozzle][max_comp_index])
nozzle_component_points[nozzle][max_comp_index] -= heads_placement_points[head]
head_assign_point.append(heads_placement_points[head])
min_points_list = list(filter(lambda x: x > 0, heads_placement_points))
if len(min_points_list) == 0 or len(head_assign_point) == 0:
break
pl += max(head_assign_point)
for head in range(max_head_index):
heads_placement[head][1] -= min(min_points_list)
heads_placement_points[head] -= min(min_points_list)
# every max_head_index heads in the non-decreasing order are grouped together as nozzle set
for idx in range(len(heads_placement) // max_head_index):
wl += heads_placement[idx][1]
objective_val.append(T_pp * machine_points + T_tr * wl + T_nc * ul + T_pl * pl)
return objective_val, machine_component_points
def assemblyline_optimizer_genetic(pcb_data, component_data):
# basic parameter
# crossover rate & mutation rate: 80% & 10%
# population size: 200
# the number of generation: 500
crossover_rate, mutation_rate = 0.8, 0.1
population_size, n_generations = 500, 500
# the number of placement points, the number of available feeders, and nozzle type of component respectively
component_points, component_feeders, component_nozzle = defaultdict(int), defaultdict(int), defaultdict(str)
for data in pcb_data.iterrows():
part_index = component_data[component_data['part'] == data[1]['part']].index.tolist()[0]
nozzle = component_data.loc[part_index]['nz']
component_points[part_index] += 1
component_feeders[part_index] = component_data.loc[part_index]['feeder-limit']
component_nozzle[part_index] = nozzle
component_points = sorted(component_points.items(), key=lambda x: x[0]) # 决定染色体排列顺序
# population initialization
best_popval = []
population = selective_initialization(component_points, component_feeders, population_size)
with tqdm(total=n_generations) as pbar:
pbar.set_description('genetic algorithm process for PCB assembly line balance')
new_population = []
for _ in range(n_generations):
# calculate fitness value
pop_val = []
for individual in population:
val, assigned_points = cal_individual_val(component_points, component_nozzle, individual)
pop_val.append(max(val))
best_popval.append(min(pop_val))
select_index = get_top_k_value(pop_val, population_size - len(new_population), reverse=False)
population = [population[idx] for idx in select_index]
pop_val = [pop_val[idx] for idx in select_index]
population += new_population
for individual in new_population:
val, _ = cal_individual_val(component_points, component_nozzle, individual)
pop_val.append(max(val))
# min-max convert
max_val = max(pop_val)
pop_val = list(map(lambda v: max_val - v, pop_val))
sum_pop_val = sum(pop_val) + 1e-10
pop_val = [v / sum_pop_val + 1e-3 for v in pop_val]
# crossover and mutation
new_population = []
for pop in range(population_size):
if pop % 2 == 0 and np.random.random() < crossover_rate:
index1 = roulette_wheel_selection(pop_val)
while True:
index2 = roulette_wheel_selection(pop_val)
if index1 != index2:
break
offspring1, offspring2 = selective_crossover(component_points, component_feeders,
population[index1], population[index2])
if np.random.random() < mutation_rate:
offspring1 = constraint_swap_mutation(component_points, offspring1)
if np.random.random() < mutation_rate:
offspring2 = constraint_swap_mutation(component_points, offspring2)
new_population.append(offspring1)
new_population.append(offspring2)
pbar.update(1)
best_individual = population[np.argmax(pop_val)]
_, assignment_result = cal_individual_val(component_points, component_nozzle, best_individual)
# available feeder check
for part_index, data in component_data.iterrows():
feeder_limit = data['feeder-limit']
for machine_index in range(max_machine_index):
if assignment_result[machine_index][part_index]:
feeder_limit -= 1
assert feeder_limit >= 0
return assignment_result