Files
smt-optimizer/base_optimizer/optimizer_celldivision.py
2023-03-15 21:14:56 +08:00

205 lines
9.7 KiB
Python

from base_optimizer.optimizer_common import *
from result_analysis import *
def convert_cell_2_result(pcb_data, component_data, component_cell, population):
assert component_cell['points'].sum() == len(pcb_data)
head_assignment = [[] for _ in range(max_head_index)]
wl = [0 for _ in range(max_head_index)] # workload
e1, e2, e3 = 1, 0.5, 1. / 6
component_result, cycle_result, feeder_slot_result = [], [], []
for index in population:
if component_cell.loc[index]['points'] == 0:
continue
# 元胞对应的元件类型和贴装点数
component_type, component_points = component_cell.loc[index, 'index'], component_cell.loc[index, 'points']
nozzle_change, maxwl = [0 for _ in range(max_head_index)], [0 for _ in range(max_head_index)]
for head in range(max_head_index):
if head_assignment[head]:
assigned_part = head_assignment[head][-1][0]
if component_data.loc[assigned_part]['nz'] != component_data.loc[component_type]['nz']:
nozzle_change[head] = 1
wl1 = wl.copy()
wl1[head] += component_points
maxwl[head] = max(wl1) + e1 * nozzle_change[head]
awl, wl2 = min(maxwl), wl.copy()
for idx, val in enumerate(maxwl):
if val > awl:
wl2[idx] += e3
head_ = wl2.index(min(wl2))
wl[head_] += component_points
head_assignment[head_].append([component_type, component_points])
head_assignment_counter = [0 for _ in range(max_head_index)]
while True:
assigned_part, assigned_cycle = [-1 for _ in range(max_head_index)], [0 for _ in range(max_head_index)]
for head in range(max_head_index):
counter = head_assignment_counter[head]
if head_assignment[head] and head_assignment[head][counter][1] > 0:
assigned_part[head] = head_assignment[head][counter][0]
assigned_cycle[head] = head_assignment[head][counter][1]
nonzero_cycle = [cycle for cycle in assigned_cycle if cycle > 0]
if not nonzero_cycle:
break
cycle = min(nonzero_cycle)
cycle_result.append(cycle)
component_result.append(assigned_part)
for head in range(max_head_index):
counter = head_assignment_counter[head]
if head_assignment[head] and head_assignment[head][counter][1] > 0:
head_assignment[head][counter][1] -= cycle_result[-1]
if head_assignment[head][counter][1] == 0 and counter < len(head_assignment[head]) - 1:
head_assignment_counter[head] += 1
feeder_slot_result = feeder_assignment(component_data, pcb_data, component_result, cycle_result)
return component_result, cycle_result, feeder_slot_result
@timer_wrapper
def optimizer_celldivision(pcb_data, component_data, hinter=True):
# Crossover method: Two-point crossover
# Mutation method: Swap
# Parent selection method: Roulette wheel
# Termination condition: 20 successive non-improvement iterations
population_size = 40 # 种群规模
crossover_rate, mutation_rate = .6, .02
golden_section = 0.618
# 获取元件元胞
point_num = len(pcb_data)
component_cell = pd.DataFrame({'index': np.arange(len(component_data)), 'points': np.zeros(len(component_data), dtype=int)})
for point_cnt in range(point_num):
part = pcb_data.loc[point_cnt, 'fdr'].split(' ', 1)[1]
index = np.where(component_data['part'].values == part)
component_cell.loc[index[0], 'points'] += 1
component_cell = component_cell[~component_cell['points'].isin([0])]
# component_cell.sort_values(by = "points" , inplace = True, ascending = False)
best_population, best_component_cell = [], []
min_pop_val = float('inf') # 最优种群价值
Div, Imp = 0, 0
while True:
# randomly generate permutations
generation_ = np.array(component_cell.index)
pop_generation = []
for _ in range(population_size):
np.random.shuffle(generation_)
pop_generation.append(generation_.tolist())
pop_val = []
for pop in range(population_size):
component_result, cycle_result, feeder_slot_result = convert_cell_2_result(pcb_data, component_data,
component_cell,
pop_generation[pop])
pop_val.append(
component_assign_evaluate(component_data, component_result, cycle_result, feeder_slot_result))
# 初始化随机生成种群
Upit = int(1.5 * np.sqrt(len(component_cell)))
while Div < Upit:
if hinter:
print('----- current div : ' + str(Div) + ' , total div : ' + str(Upit) + ' -----')
# 选择
new_pop_generation, new_pop_val = [], []
top_k_index = get_top_k_value(pop_val, int(population_size * 0.3))
for index in top_k_index:
new_pop_generation.append(pop_generation[index])
new_pop_val.append(pop_val[index])
index = [i for i in range(population_size)]
select_index = random.choices(index, weights=pop_val, k=population_size - int(population_size * 0.3))
for index in select_index:
new_pop_generation.append(pop_generation[index])
new_pop_val.append(pop_val[index])
pop_generation, pop_val = new_pop_generation, new_pop_val
# 交叉
for pop in range(population_size):
if pop % 2 == 0 and np.random.random() < crossover_rate:
index1, index2 = roulette_wheel_selection(pop_val), -1
while True:
index2 = roulette_wheel_selection(pop_val)
if index1 != index2:
break
# 两点交叉算子
pop_generation[index1], pop_generation[index2] = partially_mapped_crossover(pop_generation[index1],
pop_generation[index2])
if np.random.random() < mutation_rate:
index_ = roulette_wheel_selection(pop_val)
swap_mutation(pop_generation[index_])
# 将元件元胞分配到各个吸杆上,计算价值函数
for pop in range(population_size):
component_result, cycle_result, feeder_slot_result = convert_cell_2_result(pcb_data, component_data,
component_cell,
pop_generation[pop])
pop_val[pop] = component_assign_evaluate(component_data, component_result, cycle_result,
feeder_slot_result)
assert(pop_val[pop] > 0)
if min(pop_val) < min_pop_val:
min_pop_val = min(pop_val)
best_population = copy.deepcopy(pop_generation[np.argmin(pop_val)])
best_component_cell = copy.deepcopy(component_cell)
Div, Imp = 0, 1
else:
Div += 1
if Imp == 1:
Div, Imp = 0, 0
# Section: cell division operation
if hinter:
print(' ------------- cell division operation ------------- ')
division_component_cell = pd.DataFrame()
for idx, rows in component_cell.iterrows():
if component_cell.loc[idx, 'points'] <= 1:
division_component_cell = pd.concat([division_component_cell, pd.DataFrame([rows])],
ignore_index=True)
else:
division_component_cell = pd.concat([division_component_cell, pd.DataFrame([rows] * 2)],
ignore_index=True)
rows_counter = len(division_component_cell)
division_points = int(max(np.ceil(division_component_cell.loc[rows_counter - 2,
'points'] * golden_section), 1))
# 避免出现空元胞的情形
if division_points == 0 or division_points == division_component_cell.loc[
rows_counter - 2, 'points']:
division_component_cell.loc[rows_counter - 2, 'points'] = 1
else:
division_component_cell.loc[rows_counter - 2, 'points'] = division_points
division_component_cell.loc[rows_counter - 1, 'points'] -= division_component_cell.loc[
rows_counter - 2, 'points']
if division_component_cell.loc[rows_counter - 2, 'points'] == 0 or division_component_cell.loc[
rows_counter - 1, 'points'] == 0:
raise ValueError
component_cell = division_component_cell
# 完成分裂后重新生成染色体组
generation_ = np.array(range(len(component_cell)))
pop_generation = []
for _ in range(population_size):
np.random.shuffle(generation_)
pop_generation.append(generation_.tolist())
else:
break
assert(len(best_component_cell) == len(best_population))
return convert_cell_2_result(pcb_data, component_data, best_component_cell, best_population)