317 lines
12 KiB
Python
317 lines
12 KiB
Python
import math
|
||
import random
|
||
|
||
import matplotlib.pyplot as plt
|
||
|
||
from optimizer_common import *
|
||
from dataloader import *
|
||
|
||
|
||
def get_top_k_value(pop_val, k: int):
|
||
res = []
|
||
pop_val_cpy = copy.deepcopy(pop_val)
|
||
pop_val_cpy.sort(reverse=True)
|
||
|
||
for i in range(min(len(pop_val_cpy), k)):
|
||
for j in range(len(pop_val)):
|
||
if abs(pop_val_cpy[i] - pop_val[j]) < 1e-9 and j not in res:
|
||
res.append(j)
|
||
break
|
||
return res
|
||
|
||
|
||
def swap_mutation(component_points, individual):
|
||
offspring = individual.copy()
|
||
|
||
idx, component_index = 0, random.randint(0, len(component_points) - 1)
|
||
for points in component_points.values():
|
||
if component_index == 0:
|
||
index1 = random.randint(0, points + max_machine_index - 2)
|
||
while True:
|
||
index2 = random.randint(0, points + max_machine_index - 2)
|
||
if index1 != index2 and offspring[idx + index1] != offspring[idx + index2]:
|
||
break
|
||
offspring[idx + index1], offspring[idx + index2] = offspring[idx + index2], offspring[idx + index1]
|
||
break
|
||
|
||
component_index -= 1
|
||
idx += (points + max_machine_index - 1)
|
||
|
||
return offspring
|
||
|
||
|
||
def roulette_wheel_selection(pop_eval):
|
||
# Roulette wheel
|
||
random_val = np.random.random()
|
||
for idx, val in enumerate(pop_eval):
|
||
random_val -= val
|
||
if random_val <= 0:
|
||
return idx
|
||
return len(pop_eval) - 1
|
||
|
||
|
||
def random_selective(data, possibility): # 依概率选择随机数
|
||
assert len(data) == len(possibility) and len(data) > 0
|
||
|
||
sum_val = sum(possibility)
|
||
possibility = [p / sum_val for p in possibility]
|
||
|
||
random_val = random.random()
|
||
for idx, val in enumerate(possibility):
|
||
random_val -= val
|
||
if random_val <= 0:
|
||
break
|
||
return data[idx]
|
||
|
||
|
||
def selective_initialization(component_points, population_size):
|
||
population = [] # population initialization
|
||
|
||
for _ in range(population_size):
|
||
individual = []
|
||
for points in component_points.values():
|
||
if points == 0:
|
||
continue
|
||
avl_machine_num = random.randint(1, min(max_machine_index, points)) # 可用机器数
|
||
|
||
selective_possibility = []
|
||
for p in range(1, avl_machine_num + 1):
|
||
selective_possibility.append(pow(2, avl_machine_num - p + 1))
|
||
|
||
sel_machine_num = random_selective([p + 1 for p in range(avl_machine_num)], selective_possibility) # 选择的机器数
|
||
sel_machine_set = random.sample([p for p in range(avl_machine_num)], sel_machine_num)
|
||
|
||
sel_machine_points = [1 for _ in range(sel_machine_num)]
|
||
for p in range(sel_machine_num - 1):
|
||
if points == sum(sel_machine_points):
|
||
break
|
||
assign_points = random.randint(1, points - sum(sel_machine_points))
|
||
sel_machine_points[p] += assign_points
|
||
|
||
if sum(sel_machine_points) < points:
|
||
sel_machine_points[-1] += (points - sum(sel_machine_points))
|
||
|
||
# code component allocation into chromosome
|
||
for p in range(max_machine_index):
|
||
if p in sel_machine_set:
|
||
individual += [0 for _ in range(sel_machine_points[0])]
|
||
sel_machine_points.pop(0)
|
||
individual.append(1)
|
||
individual.pop(-1)
|
||
|
||
population.append(individual)
|
||
return population
|
||
|
||
|
||
def selective_crossover(mother, father, non_decelerating=True):
|
||
assert len(mother) == len(father)
|
||
|
||
offspring1, offspring2 = mother.copy(), father.copy()
|
||
one_counter, feasible_cutline = 0, []
|
||
for idx in range(len(mother) - 1):
|
||
if mother[idx] == 1:
|
||
one_counter += 1
|
||
if father[idx] == 1:
|
||
one_counter -= 1
|
||
|
||
# first constraint: the total number of “1”s (the number of partitions) in the chromosome is unchanged
|
||
if one_counter != 0 or idx == 0 or idx == len(mother) - 2:
|
||
continue
|
||
|
||
# the selected cutline should guarantee there are the same or a larger number unassigned machine
|
||
# for each component type
|
||
n_bro, n_new = 0, 0
|
||
if mother[idx] and mother[idx + 1]:
|
||
n_bro += 1
|
||
if father[idx] and father[idx + 1]:
|
||
n_bro += 1
|
||
if mother[idx] and father[idx + 1]:
|
||
n_new += 1
|
||
if father[idx] and mother[idx + 1]:
|
||
n_new += 1
|
||
|
||
# non_decelerating or accelerating crossover
|
||
if (non_decelerating and n_bro <= n_new) or n_bro < n_new:
|
||
feasible_cutline.append(idx)
|
||
|
||
if len(feasible_cutline) == 0:
|
||
return offspring1, offspring2
|
||
|
||
cutline_idx = feasible_cutline[random.randint(0, len(feasible_cutline) - 1)]
|
||
offspring1, offspring2 = mother[:cutline_idx + 1] + father[cutline_idx + 1:], father[:cutline_idx + 1] + mother[
|
||
cutline_idx + 1:]
|
||
return offspring1, offspring2
|
||
|
||
|
||
def cal_individual_val(component_points, component_nozzle, individual):
|
||
idx, objective_val = 0, [0]
|
||
machine_component_points = [[] for _ in range(max_machine_index)]
|
||
|
||
# decode the component allocation
|
||
for points in component_points.values():
|
||
component_gene = individual[idx: idx + points + max_machine_index - 1]
|
||
machine_idx, component_counter = 0, 0
|
||
for gene in component_gene:
|
||
if gene:
|
||
machine_component_points[machine_idx].append(component_counter)
|
||
machine_idx += 1
|
||
component_counter = 0
|
||
else:
|
||
component_counter += 1
|
||
machine_component_points[-1].append(component_counter)
|
||
idx += (points + max_machine_index - 1)
|
||
|
||
for machine_idx in range(max_machine_index):
|
||
nozzle_points = defaultdict(int)
|
||
for idx, nozzle in component_nozzle.items():
|
||
if component_points[idx] == 0:
|
||
continue
|
||
nozzle_points[nozzle] += machine_component_points[machine_idx][idx]
|
||
|
||
machine_points = sum(machine_component_points[machine_idx]) # num of placement points
|
||
if machine_points == 0:
|
||
continue
|
||
ul = math.ceil(len(nozzle_points) * 1.0 / max_head_index) - 1 # num of nozzle set
|
||
|
||
# assignments of nozzles to heads
|
||
wl = 0 # num of workload
|
||
total_heads = (1 + ul) * max_head_index - len(nozzle_points)
|
||
nozzle_heads = defaultdict(int)
|
||
for nozzle in nozzle_points.keys():
|
||
nozzle_heads[nozzle] = math.floor(nozzle_points[nozzle] * 1.0 / machine_points * total_heads)
|
||
nozzle_heads[nozzle] += 1
|
||
|
||
total_heads = (1 + ul) * max_head_index
|
||
for heads in nozzle_heads.values():
|
||
total_heads -= heads
|
||
|
||
for nozzle in nozzle_heads.keys(): # TODO:有利于减少周期的方法
|
||
if total_heads == 0:
|
||
break
|
||
nozzle_heads[nozzle] += 1
|
||
total_heads -= 1
|
||
|
||
# averagely assign placements to heads
|
||
heads_placement = []
|
||
for nozzle in nozzle_heads.keys():
|
||
points = math.floor(nozzle_points[nozzle] / nozzle_heads[nozzle])
|
||
|
||
heads_placement += [[nozzle, points] for _ in range(nozzle_heads[nozzle])]
|
||
nozzle_points[nozzle] -= (nozzle_heads[nozzle] * points)
|
||
for idx in range(len(heads_placement) - 1, -1, -1):
|
||
if nozzle_points[nozzle] <= 0:
|
||
break
|
||
nozzle_points[nozzle] -= 1
|
||
heads_placement[idx][1] += 1
|
||
heads_placement = sorted(heads_placement, key=lambda x: x[1], reverse=True)
|
||
|
||
# every max_head_index heads in the non-decreasing order are grouped together as nozzle set
|
||
for idx in range(len(heads_placement) // max_head_index):
|
||
wl += heads_placement[idx][1]
|
||
objective_val.append(T_pp * machine_points + T_tr * wl + T_nc * ul)
|
||
|
||
return max(objective_val), machine_component_points
|
||
|
||
|
||
@timer_wrapper
|
||
def optimizer(pcb_data, component_data):
|
||
# basic parameter
|
||
# crossover rate & mutation rate: 80% & 10%
|
||
# population size: 200
|
||
# the number of generation: 500
|
||
crossover_rate, mutation_rate = 0.8, 0.1
|
||
population_size, n_generations = 200, 500
|
||
|
||
# the number of placement points and nozzle type of component
|
||
component_points, component_nozzle = defaultdict(int), defaultdict(str)
|
||
for data in pcb_data.iterrows():
|
||
part_index = component_data[component_data['part'] == data[1]['part']].index.tolist()[0]
|
||
nozzle = component_data.loc[part_index]['nz']
|
||
|
||
component_points[part_index] += 1
|
||
component_nozzle[part_index] = nozzle
|
||
|
||
# population initialization
|
||
best_popval = []
|
||
population = selective_initialization(component_points, population_size)
|
||
with tqdm(total=n_generations) as pbar:
|
||
pbar.set_description('genetic process for PCB assembly')
|
||
|
||
new_population, new_pop_val = [], []
|
||
for _ in range(n_generations):
|
||
# calculate fitness value
|
||
pop_val = []
|
||
for individual in population:
|
||
val, _ = cal_individual_val(component_points, component_nozzle, individual)
|
||
pop_val.append(val)
|
||
|
||
best_popval.append(min(pop_val))
|
||
# min-max convert
|
||
max_val = max(pop_val)
|
||
pop_val = list(map(lambda v: max_val - v, pop_val))
|
||
|
||
sum_pop_val = sum(pop_val)
|
||
pop_val = [v / sum_pop_val for v in pop_val]
|
||
|
||
select_index = get_top_k_value(pop_val, population_size - len(new_pop_val))
|
||
population = [population[idx] for idx in select_index]
|
||
pop_val = [pop_val[idx] for idx in select_index]
|
||
|
||
population += new_population
|
||
for individual in new_population:
|
||
val, _ = cal_individual_val(component_points, component_nozzle, individual)
|
||
pop_val.append(val)
|
||
|
||
# crossover and mutation
|
||
new_population = []
|
||
for pop in range(population_size):
|
||
if pop % 2 == 0 and np.random.random() < crossover_rate:
|
||
index1 = roulette_wheel_selection(pop_val)
|
||
while True:
|
||
index2 = roulette_wheel_selection(pop_val)
|
||
if index1 != index2:
|
||
break
|
||
|
||
offspring1, offspring2 = selective_crossover(population[index1], population[index2])
|
||
if np.random.random() < mutation_rate:
|
||
offspring1 = swap_mutation(component_points, offspring1)
|
||
|
||
if np.random.random() < mutation_rate:
|
||
offspring1 = swap_mutation(component_points, offspring1)
|
||
|
||
new_population.append(offspring1)
|
||
new_population.append(offspring2)
|
||
|
||
pbar.update(1)
|
||
|
||
best_individual = population[np.argmin(pop_val)]
|
||
val, result = cal_individual_val(component_points, component_nozzle, best_individual)
|
||
print(result)
|
||
|
||
plt.plot(best_popval)
|
||
plt.show()
|
||
# TODO: 计算实际的PCB整线组装时间
|
||
|
||
|
||
if __name__ == '__main__':
|
||
# warnings.simplefilter('ignore')
|
||
# 参数解析
|
||
parser = argparse.ArgumentParser(description='assembly line optimizer implementation')
|
||
parser.add_argument('--filename', default='PCB.txt', type=str, help='load pcb data')
|
||
parser.add_argument('--auto_register', default=1, type=int, help='register the component according the pcb data')
|
||
|
||
params = parser.parse_args()
|
||
|
||
# 结果输出显示所有行和列
|
||
pd.set_option('display.max_columns', None)
|
||
pd.set_option('display.max_rows', None)
|
||
|
||
# 加载PCB数据
|
||
pcb_data, component_data, _ = load_data(params.filename, component_register=params.auto_register) # 加载PCB数据
|
||
|
||
optimizer(pcb_data, component_data)
|
||
|
||
|
||
|
||
|