178 lines
8.7 KiB
Python
178 lines
8.7 KiB
Python
from base_optimizer.optimizer_common import *
|
|
from base_optimizer.result_analysis import *
|
|
|
|
|
|
def line_optimizer_model(component_data, pcb_data, machine_num, hinter=True):
|
|
mdl = Model('pcb assembly line optimizer')
|
|
mdl.setParam('Seed', 0)
|
|
mdl.setParam('OutputFlag', hinter) # set whether output the debug information
|
|
# mdl.setParam('TimeLimit', 0.01)
|
|
|
|
nozzle_type, component_type = [], []
|
|
for _, data in component_data.iterrows():
|
|
if not data.nz in nozzle_type:
|
|
nozzle_type.append(data.nz)
|
|
component_type.append(data.part)
|
|
|
|
ratio = 1
|
|
J = len(nozzle_type)
|
|
N = 10000
|
|
M = machine_num
|
|
|
|
H = max_head_index
|
|
I = len(component_data)
|
|
S = min(len(component_data) * ratio, 60)
|
|
K = math.ceil(len(pcb_data) * 1.0 / H / M) + 1
|
|
# K = 3
|
|
CompOfNozzle = [[0 for _ in range(J)] for _ in range(I)] # Compatibility
|
|
|
|
component_point = [0 for _ in range(I)]
|
|
for idx, data in component_data.iterrows():
|
|
nozzle = component_data.iloc[idx].nz
|
|
CompOfNozzle[idx][nozzle_type.index(nozzle)] = 1
|
|
component_point[idx] = data.points
|
|
|
|
# objective related
|
|
g = mdl.addVars(list_range(K), list_range(M), vtype=GRB.BINARY)
|
|
d = mdl.addVars(list_range(K), list_range(H), list_range(M), lb=0, vtype=GRB.CONTINUOUS)
|
|
u = mdl.addVars(list_range(I), list_range(K), list_range(H), list_range(M), vtype=GRB.BINARY)
|
|
v = mdl.addVars(list_range(S), list_range(K), list_range(H), list_range(M), vtype=GRB.BINARY)
|
|
d_plus = mdl.addVars(list_range(J), list_range(K), list_range(H), list_range(M), lb=0, vtype=GRB.CONTINUOUS)
|
|
d_minus = mdl.addVars(list_range(J), list_range(K), list_range(H), list_range(M), lb=0, vtype=GRB.CONTINUOUS)
|
|
w = mdl.addVars(list_range(K), list_range(M), vtype=GRB.CONTINUOUS)
|
|
|
|
e = mdl.addVars(list_range(-(H - 1) * ratio, S), list_range(K), list_range(M), vtype=GRB.BINARY)
|
|
f = mdl.addVars(list_range(S), list_range(I), list_range(M), vtype=GRB.BINARY, name='')
|
|
obj = mdl.addVar(lb=0, ub=N, vtype=GRB.CONTINUOUS)
|
|
|
|
mdl.addConstrs(g[k, m] >= g[k + 1, m] for k in range(K - 1) for m in range(M))
|
|
|
|
mdl.addConstrs(
|
|
quicksum(u[i, k, h, m] for i in range(I)) <= g[k, m] for k in range(K) for h in range(H) for m in range(M))
|
|
|
|
# nozzle no more than 1 for head h and cycle k
|
|
mdl.addConstrs(quicksum(CompOfNozzle[i][j] * u[i, k, h, m] for i in range(I) for j in range(J)) <= 1 for k
|
|
in range(K) for h in range(H) for m in range(M))
|
|
|
|
# work completion
|
|
mdl.addConstrs(
|
|
quicksum(u[i, k, h, m] for k in range(K) for h in range(H) for m in range(M)) == component_point[i] for i in
|
|
range(I))
|
|
# nozzle change
|
|
mdl.addConstrs(quicksum(CompOfNozzle[i][j] * u[i, k, h, m] for i in range(I)) - quicksum(
|
|
CompOfNozzle[i][j] * u[i, k + 1, h, m] for i in range(I)) == d_plus[j, k, h, m] - d_minus[j, k, h, m] for k in
|
|
range(K - 1) for j in range(J) for h in range(H) for m in range(M))
|
|
|
|
mdl.addConstrs(quicksum(CompOfNozzle[i][j] * u[i, K - 1, h, m] for i in range(I)) - quicksum(
|
|
CompOfNozzle[i][j] * u[i, 0, h, m] for i in range(I)) == d_plus[j, K - 1, h, m] - d_minus[j, K - 1, h, m] for j
|
|
in range(J) for h in range(H) for m in range(M))
|
|
|
|
mdl.addConstrs(2 * d[k, h, m] == quicksum(d_plus[j, k, h, m] for j in range(J)) + quicksum(
|
|
d_minus[j, k, h, m] for j in range(J)) - 1 for k in range(K) for h in range(H) for m in range(M))
|
|
|
|
# simultaneous pick
|
|
for s in range(-(H - 1) * ratio, S):
|
|
rng = list(range(max(0, -math.floor(s / ratio)), min(H, math.ceil((S - s) / ratio))))
|
|
for k in range(K):
|
|
mdl.addConstrs(
|
|
quicksum(u[i, k, h, m] * v[s + h * ratio, k, h, m] for h in rng for i in range(I)) <= N * e[s, k, m] for
|
|
m in range(M))
|
|
mdl.addConstrs(
|
|
quicksum(u[i, k, h, m] * v[s + h * ratio, k, h, m] for h in rng for i in range(I)) >= e[s, k, m] for m
|
|
in range(M))
|
|
|
|
# head - feeder slot relationship
|
|
mdl.addConstrs(
|
|
quicksum(v[s, k, h, m] for s in range(S)) == quicksum(u[i, k, h, m] for i in range(I)) for h in range(H) for k
|
|
in range(K) for m in range(M))
|
|
|
|
# feeder related
|
|
mdl.addConstrs(quicksum(f[s, i, m] for s in range(S) for m in range(M)) <= component_data.iloc[i].fdn for i in range(I))
|
|
mdl.addConstrs(quicksum(f[s, i, m] for i in range(I)) <= 1 for s in range(S) for m in range(M))
|
|
mdl.addConstrs(
|
|
quicksum(u[i, k, h, m] * v[s, k, h, m] for h in range(H) for k in range(K)) >= f[s, i, m] for i in range(I) for
|
|
s in range(S) for m in range(M))
|
|
mdl.addConstrs(
|
|
quicksum(u[i, k, h, m] * v[s, k, h, m] for h in range(H) for k in range(K)) <= N * f[s, i, m] for i in range(I)
|
|
for s in range(S) for m in range(M))
|
|
|
|
# pickup movement
|
|
mdl.addConstrs(w[k, m] >= s1 * e[s1, k, m] - s2 * e[s2, k, m] + N * (e[s1, k, m] + e[s2, k, m] - 2) for s1 in
|
|
range(-(H - 1) * ratio, S) for s2 in range(-(H - 1) * ratio, S) for k in range(K) for m in range(M))
|
|
|
|
# objective
|
|
mdl.addConstrs(obj >= Fit_cy * quicksum(g[k, m] for k in range(K)) + Fit_nz * 2 * quicksum(
|
|
d[k, h, m] for h in range(H) for k in range(K)) + Fit_pu * quicksum(
|
|
e[s, k, m] for s in range(-(H - 1) * ratio, S) for k in range(K)) + Fit_pl * quicksum(
|
|
u[i, k, h, m] for i in range(I) for k in range(K) for h in range(H)) + Fit_mv * head_interval * quicksum(
|
|
w[k, m] for k in range(K)) for m in range(M))
|
|
|
|
mdl.setObjective(obj, GRB.MINIMIZE)
|
|
|
|
mdl.optimize()
|
|
for m in range(M):
|
|
print(f'machine {m} : cycle : {sum(g[k, m].x for k in range(K))}, '
|
|
f'nozzle change : {sum(d[k, h, m].x for h in range(H) for k in range(K))}, '
|
|
f'pick up : {sum(e[s, k, m].x for s in range(-(H - 1) * ratio, S) for k in range(K))}, '
|
|
f'placement : {sum(u[i, k, h, m].x for i in range(I) for k in range(K) for h in range(H))}, '
|
|
f'pick movement : {sum(w[k, m].x for k in range(K))}')
|
|
|
|
pcb_part_indices = defaultdict(list)
|
|
for idx, data in pcb_data.iterrows():
|
|
pcb_part_indices[data.part].append(idx)
|
|
|
|
assembly_info = []
|
|
for m in range(M):
|
|
partial_component_data, partial_pcb_data = copy.deepcopy(component_data), pd.DataFrame(columns=pcb_data.columns)
|
|
partial_component_data['points'] = 0
|
|
|
|
component_result, cycle_result, feeder_slot_result = [], [], []
|
|
head_place_pos = []
|
|
for k in range(K):
|
|
if abs(g[k, m].x) < 1e-3:
|
|
continue
|
|
component_result.append([-1 for _ in range(H)])
|
|
cycle_result.append(1)
|
|
feeder_slot_result.append([-1 for _ in range(H)])
|
|
|
|
for h in range(H):
|
|
for i in range(I):
|
|
if abs(u[i, k, h, m].x) < 1e-3:
|
|
continue
|
|
|
|
component_result[-1][h] = i
|
|
|
|
idx = pcb_part_indices[component_data.iloc[i].part][0]
|
|
partial_pcb_data = pd.concat([partial_pcb_data, pd.DataFrame(pcb_data.iloc[idx]).T])
|
|
|
|
head_place_pos.append(pcb_data.iloc[idx].x - h * head_interval)
|
|
pcb_part_indices[component_data.iloc[i].part].pop(0)
|
|
partial_component_data.loc[i, 'points'] += 1
|
|
|
|
for s in range(S):
|
|
if abs(v[s, k, h, m].x) < 1e-3:
|
|
continue
|
|
feeder_slot_result[-1][h] = s
|
|
|
|
average_pos = round(
|
|
(sum(head_place_pos) / len(head_place_pos) + stopper_pos[0] - slotf1_pos[0] + 1) / slot_interval)
|
|
print(f'average_pos: {average_pos}')
|
|
for k in range(len(feeder_slot_result)):
|
|
for h in range(H):
|
|
if feeder_slot_result[k][h] == -1:
|
|
continue
|
|
feeder_slot_result[k][h] = feeder_slot_result[k][h] * 2 + average_pos
|
|
|
|
placement_result, head_sequence = greedy_placement_route_generation(partial_component_data, partial_pcb_data,
|
|
component_result, cycle_result,
|
|
feeder_slot_result, hinter=False)
|
|
print('----- Placement machine ' + str(m + 1) + ' ----- ')
|
|
opt_res = OptResult(component_result, cycle_result,feeder_slot_result, placement_result, head_sequence)
|
|
info = placement_info_evaluation(partial_component_data, partial_pcb_data, opt_res, hinter=False)
|
|
optimization_assign_result(partial_component_data, partial_pcb_data, opt_res, nozzle_hinter=True,
|
|
component_hinter=True, feeder_hinter=True)
|
|
info.print()
|
|
assembly_info.append(info)
|
|
print('------------------------------ ')
|
|
return assembly_info
|