Files
smt-optimizer/lineopt_hyperheuristic.py
hit-lu 37f4e5b02c 整线优化第一版论文定稿工程
增加了整线批量测试
修改了现有min-max模型路径
修改了遗传算法整体框架
估计器增加异常数据剔除
封装优化结果类
修改供料器扫描算法中重复吸嘴组的判定
2024-06-26 09:44:08 +08:00

426 lines
19 KiB
Python

from base_optimizer.optimizer_interface import *
from generator import *
from estimator import *
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'
class Heuristic:
@staticmethod
def apply(cp_points, cp_nozzle, cp_assign, machine_assign):
return -1
class LeastPoints(Heuristic):
@staticmethod
def apply(cp_points, cp_nozzle, cp_assign, machine_assign):
machine_points = []
for machine_idx in machine_assign:
if len(cp_assign[machine_idx]) == 0:
return machine_idx
machine_points.append(sum([cp_points[cp_idx] for cp_idx in cp_assign[machine_idx]]))
return machine_assign[np.argmin(machine_points)]
class LeastNzTypes(Heuristic):
@staticmethod
def apply(cp_points, cp_nozzle, cp_assign, machine_assign):
machine_nozzle = []
for machine_idx in machine_assign:
if len(cp_assign[machine_idx]) == 0:
return machine_idx
machine_nozzle.append([cp_nozzle[cp_idx] for cp_idx in cp_assign[machine_idx]])
index = np.argmin(
[len(set(nozzle)) + 1e-5 * sum(cp_points[c] for c in cp_assign[machine_idx]) for machine_idx, nozzle in
enumerate(machine_nozzle)])
return machine_assign[index]
class LeastCpTypes(Heuristic):
@staticmethod
def apply(cp_points, cp_nozzle, cp_assign, machine_assign):
machine_types = []
for machine_idx in machine_assign:
machine_types.append(
len(cp_assign[machine_idx]) + 1e-5 * sum(cp_points[cp] for cp in cp_assign[machine_idx]))
return machine_assign[np.argmin(machine_types)]
class LeastCpNzRatio(Heuristic):
@staticmethod
def apply(cp_points, cp_nozzle, cp_assign, machine_assign):
machine_nz_type, machine_cp_type = [], []
for machine_idx in machine_assign:
if len(cp_assign[machine_idx]) == 0:
return machine_idx
machine_nz_type.append(set(cp_nozzle[cp_idx] for cp_idx in cp_assign[machine_idx]))
machine_cp_type.append(len(cp_assign[machine_idx]))
min_idx = np.argmin([(machine_cp_type[idx] + 1e-5 * sum(
cp_points[c] for c in cp_assign[machine_assign[idx]])) / (len(machine_nz_type[idx]) + 1e-5) for idx in
range(len(machine_assign))])
return machine_assign[min_idx]
def nozzle_assignment(cp_points, cp_nozzle, cp_assign):
nozzle_heads, nozzle_points = defaultdict(int), defaultdict(int)
for cp_idx in cp_assign:
nozzle_points[cp_nozzle[cp_idx]] += cp_points[cp_idx]
nozzle_heads[cp_nozzle[cp_idx]] = 1
while sum(nozzle_heads.values()) != max_head_index:
max_cycle_nozzle = None
for nozzle, head_num in nozzle_heads.items():
if max_cycle_nozzle is None or nozzle_points[nozzle] / head_num > nozzle_points[max_cycle_nozzle] / \
nozzle_heads[max_cycle_nozzle]:
max_cycle_nozzle = nozzle
assert max_cycle_nozzle is not None
nozzle_heads[max_cycle_nozzle] += 1
return nozzle_heads, nozzle_points
class LeastCycle(Heuristic):
@staticmethod
def apply(cp_points, cp_nozzle, cp_assign, machine_assign):
machine_cycle = []
for machine_idx in machine_assign:
assign_component = cp_assign[machine_idx]
if len(assign_component) == 0:
return machine_idx
nozzle_heads, nozzle_points = nozzle_assignment(cp_points, cp_nozzle, assign_component)
machine_cycle.append(
max(nozzle_points[nozzle] / head for nozzle, head in nozzle_heads.items()) + 1e-5 * sum(
cp_points[c] for c in cp_assign[machine_idx]))
return machine_assign[np.argmin(machine_cycle)]
class LeastNzChange(Heuristic):
@staticmethod
def apply(cp_points, cp_nozzle, cp_assign, machine_assign):
machine_nozzle_change = []
for machine_idx in machine_assign:
assign_component = cp_assign[machine_idx]
if len(assign_component) == 0:
return machine_idx
heads_points = []
nozzle_heads, nozzle_points = nozzle_assignment(cp_points, cp_nozzle, assign_component)
for nozzle, head in nozzle_heads.items():
for _ in range(head):
heads_points.append(nozzle_points[nozzle] / nozzle_heads[nozzle])
machine_nozzle_change.append(np.std(heads_points) + 1e-5 * sum(cp_points[c] for c in cp_assign[machine_idx]))
return machine_assign[np.argmin(machine_nozzle_change)]
class LeastPickup(Heuristic):
@staticmethod
def apply(cp_points, cp_nozzle, cp_assign, machine_assign):
machine_pick_up = []
for machine_idx in machine_assign:
assign_component = cp_assign[machine_idx]
if len(assign_component) == 0:
return machine_idx
nozzle_heads, nozzle_points = nozzle_assignment(cp_points, cp_nozzle, assign_component)
nozzle_level, nozzle_counter = defaultdict(int), defaultdict(int)
level_points = defaultdict(int)
for cp_idx in sorted(assign_component, key=lambda x: cp_points[x], reverse=True):
nozzle, points = cp_nozzle[cp_idx], cp_points[cp_idx]
if nozzle_counter[nozzle] and nozzle_counter[nozzle] % nozzle_heads[nozzle] == 0:
nozzle_level[nozzle] += 1
level = nozzle_level[nozzle]
level_points[level] = max(level_points[level], points)
nozzle_counter[nozzle] += 1
machine_pick_up.append(sum(points for points in level_points.values()) + 1e-5 * sum(
cp_points[idx] for idx in cp_assign[machine_idx]))
return machine_assign[np.argmin(machine_pick_up)]
def generate_pattern(heuristic_map, cp_points):
"""
Generates a random pattern.
:return: The generated pattern string.
"""
return "".join([random.choice(list(heuristic_map.keys())) for _ in range(random.randrange(1, len(cp_points)))])
def crossover(cp_points, parent1, parent2):
"""
Attempt to perform crossover between two chromosomes.
:param parent1: The first parent.
:param parent2: The second parent.
:return: The two individuals after crossover has been performed.
"""
point1, point2 = random.randrange(len(parent1)), random.randrange(len(parent2))
substr1, substr2 = parent1[point1:], parent2[point2:]
offspring1, offspring2 = "".join((parent1[:point1], substr2)), "".join((parent2[:point2], substr1))
return offspring1[:len(cp_points)], offspring2[:len(cp_points)]
def mutation(heuristic_map, cp_points, individual):
"""
Attempts to mutate the individual by replacing a random heuristic in the chromosome by a generated pattern.
:param individual: The individual to mutate.
:return: The mutated individual.
"""
pattern = list(individual)
mutation_point = random.randrange(len(pattern))
pattern[mutation_point] = generate_pattern(heuristic_map, cp_points)
return ''.join(pattern)[:len(cp_points)]
def population_initialization(population_size, heuristic_map, cp_points):
return [generate_pattern(heuristic_map, cp_points) for _ in range(population_size)]
def convert_assignment_result(heuristic_map, cp_index, cp_points, cp_nozzle, cp_feeders, component_list, individual,
machine_number):
component_number = len(cp_feeders.keys())
cp_assign = [[] for _ in range(machine_number)]
component_machine_assign = [[0 for _ in range(machine_number)] for _ in range(component_number)]
machine_assign_counter = [0 for _ in range(machine_number)]
data_mgr = DataMgr()
for idx, div_cp_idx in enumerate(component_list):
h = individual[idx % len(individual)]
cp_idx = cp_index[div_cp_idx]
machine_assign = [] # 可被分配的机器索引
if sum(component_machine_assign[cp_idx][:]) < cp_feeders[cp_idx]:
for machine_idx in range(machine_number):
if component_machine_assign[cp_idx][machine_idx] or machine_assign_counter[
machine_idx] < data_mgr.max_component_types:
machine_assign.append(machine_idx)
machine_idx = heuristic_map[h].apply(cp_points, cp_nozzle, cp_assign, machine_assign)
else:
for machine_idx in range(machine_number):
if component_machine_assign[cp_idx][machine_idx]:
machine_assign.append(machine_idx)
machine_idx = heuristic_map[h].apply(cp_points, cp_nozzle, cp_assign, machine_assign)
cp_assign[machine_idx].append(div_cp_idx)
if component_machine_assign[cp_idx][machine_idx] == 0:
machine_assign_counter[machine_idx] += 1
component_machine_assign[cp_idx][machine_idx] = 1
return cp_assign
def cal_individual_val(heuristic_map, cp_index, cp_points, cp_nozzle, cp_feeders, board_width, board_height,
component_list, individual, machine_number, estimator):
machine_cp_assign = convert_assignment_result(heuristic_map, cp_index, cp_points, cp_nozzle, cp_feeders, component_list,
individual, machine_number)
component_number = len(cp_feeders)
machine_cp_points = [[0 for _ in range(component_number)] for _ in range(machine_number)]
for machine_idx in range(machine_number):
for idx in machine_cp_assign[machine_idx]:
machine_cp_points[machine_idx][cp_index[idx]] += cp_points[idx]
machine_cp_feeders = [[0 for _ in range(component_number)] for _ in range(machine_number)]
for cp_idx in range(component_number):
feeder_nums = cp_feeders[cp_idx]
for machine_idx in range(machine_number):
if machine_cp_points[machine_idx][cp_idx]:
machine_cp_feeders[machine_idx][cp_idx] = 1
feeder_nums -= 1
while feeder_nums > 0:
assign_machine = None
for machine_idx in range(machine_number):
if machine_cp_points[machine_idx][cp_idx] == 0:
continue
if assign_machine is None:
assign_machine = machine_idx
continue
if machine_cp_points[assign_machine][cp_idx] / machine_cp_feeders[assign_machine][cp_idx] \
< machine_cp_points[machine_idx][cp_idx] / machine_cp_feeders[machine_idx][cp_idx]:
assign_machine = machine_idx
machine_cp_feeders[assign_machine][cp_idx] += 1
feeder_nums -= 1
nozzle_type = defaultdict(str)
for idx, cp_idx in cp_index.items():
nozzle_type[cp_idx] = cp_nozzle[idx]
objective_val = []
for machine_idx in range(machine_number):
div_cp_points, div_cp_nozzle = defaultdict(int), defaultdict(str)
idx = 0
for cp_idx in range(component_number):
total_points = machine_cp_points[machine_idx][cp_idx]
if total_points == 0:
continue
div_index = 0
div_points = [total_points // machine_cp_feeders[machine_idx][cp_idx] for _ in
range(machine_cp_feeders[machine_idx][cp_idx])]
while sum(div_points) < total_points:
div_points[div_index] += 1
div_index += 1
for points in div_points:
div_cp_points[idx] = points
div_cp_nozzle[idx] = nozzle_type[cp_idx]
idx += 1
objective_val.append(estimator.predict(div_cp_points, div_cp_nozzle, board_width, board_height))
return objective_val
def line_optimizer_hyperheuristic(component_data, pcb_data, machine_number):
heuristic_map = {
'p': LeastPoints,
'n': LeastNzChange,
'c': LeastCpTypes,
'r': LeastCpNzRatio,
'k': LeastCycle,
'g': LeastNzChange,
'u': LeastPickup,
}
division_part = []
for _, data in component_data.iterrows():
division_part.extend([data.points / data.fdn for _ in range(data.fdn)])
division_points = sum(division_part) / len(division_part)
# genetic-based hyper-heuristic
crossover_rate, mutation_rate = 0.6, 0.1
population_size, total_generation = 20, 50
group_size = 10
estimator = NeuralEstimator()
best_val = None
best_heuristic_list, best_component_list = None, None
cp_feeders, cp_nozzle = defaultdict(int), defaultdict(str)
cp_points, cp_index = defaultdict(int), defaultdict(int)
division_component_data = pd.DataFrame(columns=component_data.columns)
idx = 0
for cp_idx, data in component_data.iterrows():
cp_feeders[cp_idx] = data.fdn
division_data = copy.deepcopy(data)
feeder_limit, total_points = division_data.fdn, division_data.points
if feeder_limit != 1:
feeder_limit = round(min(max(total_points // division_points * 1.5, feeder_limit), total_points))
# feeder_limit = total_points # 小规模数据启用
surplus_points = total_points % feeder_limit
for _ in range(feeder_limit):
division_data.fdn, division_data.points = 1, math.floor(total_points / feeder_limit)
if surplus_points:
division_data.points += 1
surplus_points -= 1
cp_points[idx], cp_nozzle[idx] = division_data.points, division_data.nz
cp_index[idx] = cp_idx
idx += 1
division_component_data = pd.concat([division_component_data, pd.DataFrame(division_data).T])
division_component_data = division_component_data.reset_index()
component_list = [idx for idx, data in division_component_data.iterrows() if data.points > 0]
board_width, board_height = pcb_data['x'].max() - pcb_data['x'].min(), pcb_data['y'].max() - pcb_data['y'].min()
with tqdm(total=total_generation * group_size) as pbar:
pbar.set_description('hyper-heuristic algorithm process for PCB assembly line balance')
for _ in range(group_size):
random.shuffle(component_list)
new_population = []
population = population_initialization(population_size, heuristic_map, cp_points)
# calculate fitness value
pop_val = []
for individual in population:
val = cal_individual_val(heuristic_map, cp_index, cp_points, cp_nozzle, cp_feeders, board_width,
board_height, component_list, individual, machine_number, estimator)
pop_val.append(max(val))
for _ in range(total_generation):
population += new_population
for individual in new_population:
val = cal_individual_val(heuristic_map, cp_index, cp_points, cp_nozzle, cp_feeders, board_width,
board_height, component_list, individual, machine_number, estimator)
pop_val.append(max(val))
select_index = get_top_k_value(pop_val, population_size, reverse=False)
population = [population[idx] for idx in select_index]
pop_val = [pop_val[idx] for idx in select_index]
# min-max convert
max_val = max(pop_val)
sel_pop_val = list(map(lambda v: max_val - v, pop_val))
sum_pop_val = sum(sel_pop_val) + 1e-10
sel_pop_val = [v / sum_pop_val + 1e-3 for v in sel_pop_val]
# crossover and mutation
new_population = []
for pop in range(population_size):
if pop % 2 == 0 and np.random.random() < crossover_rate:
index1 = roulette_wheel_selection(sel_pop_val)
while True:
index2 = roulette_wheel_selection(sel_pop_val)
if index1 != index2:
break
offspring1, offspring2 = crossover(cp_points, population[index1], population[index2])
if np.random.random() < mutation_rate:
offspring1 = mutation(heuristic_map, cp_points, offspring1)
if np.random.random() < mutation_rate:
offspring2 = mutation(heuristic_map, cp_points, offspring2)
new_population.append(offspring1)
new_population.append(offspring2)
pbar.update(1)
val = cal_individual_val(heuristic_map, cp_index, cp_points, cp_nozzle, cp_feeders, board_width,
board_height, component_list, population[0], machine_number, estimator)
machine_assign = convert_assignment_result(heuristic_map, cp_index, cp_points, cp_nozzle, cp_feeders,
component_list, population[0], machine_number)
assignment_result = [[0 for _ in range(len(component_data))] for _ in range(machine_number)]
for machine_idx in range(machine_number):
for idx in machine_assign[machine_idx]:
assignment_result[machine_idx][cp_index[idx]] += cp_points[idx]
partial_pcb_data, partial_component_data = convert_line_assigment(pcb_data, component_data,
assignment_result)
max_machine_idx = np.argmax(val)
val = exact_assembly_time(partial_pcb_data[max_machine_idx], partial_component_data[max_machine_idx])
if best_val is None or val < best_val:
for machine_idx in range(machine_number):
if machine_idx == max_machine_idx:
continue
val = max(val,
exact_assembly_time(partial_pcb_data[machine_idx], partial_component_data[machine_idx]))
if best_val is not None and val > best_val:
break
if best_val is None or val < best_val:
best_val = val
best_heuristic_list = population[0]
best_component_list = component_list.copy()
val = cal_individual_val(heuristic_map, cp_index, cp_points, cp_nozzle, cp_feeders, board_width, board_height,
best_component_list, best_heuristic_list, machine_number, estimator)
machine_cp_points = convert_assignment_result(heuristic_map, cp_index, cp_points, cp_nozzle, cp_feeders,
best_component_list, best_heuristic_list, machine_number)
assignment_result = [[0 for _ in range(len(component_data))] for _ in range(machine_number)]
for machine_idx in range(machine_number):
for idx in machine_cp_points[machine_idx]:
assignment_result[machine_idx][cp_index[idx]] += cp_points[idx]
return assignment_result