# implementation of <> import copy import matplotlib.pyplot as plt from base_optimizer.optimizer_common import * def selective_initialization(component_points, component_feeders, population_size): population = [] # population initialization for _ in range(population_size): individual = [] for part_index, points in component_points: if points == 0: continue # 可用机器数 avl_machine_num = random.randint(1, min(max_machine_index, component_feeders[part_index], points)) selective_possibility = [] for p in range(1, avl_machine_num + 1): selective_possibility.append(pow(2, avl_machine_num - p + 1)) sel_machine_num = random_selective([p + 1 for p in range(avl_machine_num)], selective_possibility) # 选择的机器数 sel_machine_set = random.sample([p for p in range(max_machine_index)], sel_machine_num) sel_machine_points = [1 for _ in range(sel_machine_num)] for p in range(sel_machine_num - 1): if points == sum(sel_machine_points): break assign_points = random.randint(1, points - sum(sel_machine_points)) sel_machine_points[p] += assign_points if sum(sel_machine_points) < points: sel_machine_points[-1] += (points - sum(sel_machine_points)) # code component allocation into chromosome for p in range(max_machine_index): if p in sel_machine_set: individual += [0 for _ in range(sel_machine_points[0])] sel_machine_points.pop(0) individual.append(1) individual.pop(-1) population.append(individual) return population def selective_crossover(component_points, component_feeders, mother, father, non_decelerating=True): assert len(mother) == len(father) offspring1, offspring2 = mother.copy(), father.copy() one_counter, feasible_cut_line = 0, [] idx = 0 for part_index, points in component_points: one_counter = 0 idx_, mother_cut_line, father_cut_line = 0, [-1], [-1] for idx_, gene in enumerate(mother[idx: idx + points + max_machine_index - 1]): if gene: mother_cut_line.append(idx_) mother_cut_line.append(idx_ + 1) for idx_, gene in enumerate(father[idx: idx + points + max_machine_index - 1]): if gene: father_cut_line.append(idx_) father_cut_line.append(idx_ + 1) for offset in range(points + max_machine_index - 1): if mother[idx + offset] == 1: one_counter += 1 if father[idx + offset] == 1: one_counter -= 1 # first constraint: the total number of '1's (the number of partitions) in the chromosome is unchanged if one_counter != 0 or offset == 0 or offset == points + max_machine_index - 2: continue # the selected cut-line should guarantee there are the same or a larger number unassigned machine # for each component type n_bro, n_new = 0, 0 if mother[idx + offset] and mother[idx + offset + 1]: n_bro += 1 if father[idx + offset] and father[idx + offset + 1]: n_bro += 1 if mother[idx + offset] and father[idx + offset + 1]: n_new += 1 if father[idx + offset] and mother[idx + offset + 1]: n_new += 1 # second constraint: non_decelerating or accelerating crossover if n_new < n_bro or (n_new == n_bro and not non_decelerating): continue # third constraint (customized constraint): # no more than the maximum number of available machine for each component type new_mother_cut_line, new_father_cut_line = [], [] for idx_ in range(max_machine_index + 1): if mother_cut_line[idx_] <= offset: new_mother_cut_line.append(mother_cut_line[idx_]) else: new_father_cut_line.append(mother_cut_line[idx_]) if father_cut_line[idx_] <= offset: new_father_cut_line.append(father_cut_line[idx_]) else: new_mother_cut_line.append(father_cut_line[idx_]) sorted(new_mother_cut_line, reverse=False) sorted(new_father_cut_line, reverse=False) n_mother_machine, n_father_machine = 0, 0 for idx_ in range(max_machine_index): if new_mother_cut_line[idx_ + 1] - new_mother_cut_line[idx_]: n_mother_machine += 1 if new_father_cut_line[idx_ + 1] - new_father_cut_line[idx_]: n_father_machine += 1 if n_mother_machine > component_feeders[part_index] or n_father_machine > component_feeders[part_index]: continue feasible_cut_line.append(idx + offset) idx += (points + max_machine_index - 1) if len(feasible_cut_line) == 0: return offspring1, offspring2 cut_line_idx = feasible_cut_line[random.randint(0, len(feasible_cut_line) - 1)] offspring1, offspring2 = mother[:cut_line_idx + 1] + father[cut_line_idx + 1:], father[:cut_line_idx + 1] + mother[ cut_line_idx + 1:] return offspring1, offspring2 def cal_individual_val(component_points, component_nozzle, individual): idx, objective_val = 0, [] machine_component_points = [[] for _ in range(max_machine_index)] nozzle_component_points = defaultdict(list) # decode the component allocation for comp_idx, points in component_points: component_gene = individual[idx: idx + points + max_machine_index - 1] machine_idx, component_counter = 0, 0 for gene in component_gene: if gene: machine_component_points[machine_idx].append(component_counter) machine_idx += 1 component_counter = 0 else: component_counter += 1 machine_component_points[-1].append(component_counter) idx += (points + max_machine_index - 1) nozzle_component_points[component_nozzle[comp_idx]] = [0] * len(component_points) # 初始化元件-吸嘴点数列表 for comp_idx, points in component_points: nozzle_component_points[component_nozzle[comp_idx]][comp_idx] = points for machine_idx in range(max_machine_index): nozzle_points = defaultdict(int) for idx, nozzle in component_nozzle.items(): if component_points[idx] == 0: continue nozzle_points[nozzle] += machine_component_points[machine_idx][idx] machine_points = sum(machine_component_points[machine_idx]) # num of placement points if machine_points == 0: continue ul = math.ceil(len(nozzle_points) * 1.0 / max_head_index) - 1 # num of nozzle set # assignments of nozzles to heads wl = 0 # num of workload total_heads = (1 + ul) * max_head_index - len(nozzle_points) nozzle_heads = defaultdict(int) for nozzle in nozzle_points.keys(): if nozzle_points[nozzle] == 0: continue nozzle_heads[nozzle] = math.floor(nozzle_points[nozzle] * 1.0 / machine_points * total_heads) nozzle_heads[nozzle] += 1 total_heads = (1 + ul) * max_head_index for heads in nozzle_heads.values(): total_heads -= heads while True: nozzle = max(nozzle_heads, key=lambda x: nozzle_points[x] / nozzle_heads[x]) if total_heads == 0: break nozzle_heads[nozzle] += 1 total_heads -= 1 # averagely assign placements to heads heads_placement = [] for nozzle in nozzle_heads.keys(): points = math.floor(nozzle_points[nozzle] / nozzle_heads[nozzle]) heads_placement += [[nozzle, points] for _ in range(nozzle_heads[nozzle])] nozzle_points[nozzle] -= (nozzle_heads[nozzle] * points) for idx in range(len(heads_placement) - 1, -1, -1): if nozzle_points[nozzle] <= 0: break nozzle_points[nozzle] -= 1 heads_placement[idx][1] += 1 heads_placement = sorted(heads_placement, key=lambda x: x[1], reverse=True) # the number of pick-up operations # (under the assumption of the number of feeder available for each comp. type is equal 1) pl = 0 heads_placement_points = [0 for _ in range(max_head_index)] while True: head_assign_point = [] for head in range(max_head_index): if heads_placement_points[head] != 0 or heads_placement[head] == 0: continue nozzle, points = heads_placement[head] max_comp_index = np.argmax(nozzle_component_points[nozzle]) heads_placement_points[head] = min(points, nozzle_component_points[nozzle][max_comp_index]) nozzle_component_points[nozzle][max_comp_index] -= heads_placement_points[head] head_assign_point.append(heads_placement_points[head]) min_points_list = list(filter(lambda x: x > 0, heads_placement_points)) if len(min_points_list) == 0 or len(head_assign_point) == 0: break pl += max(head_assign_point) for head in range(max_head_index): heads_placement[head][1] -= min(min_points_list) heads_placement_points[head] -= min(min_points_list) # every max_head_index heads in the non-decreasing order are grouped together as nozzle set for idx in range(len(heads_placement) // max_head_index): wl += heads_placement[idx][1] objective_val.append(T_pp * machine_points + T_tr * wl + T_nc * ul + T_pl * pl) <<<<<<< HEAD ======= >>>>>>> 87ddb057cadf152d7af793aa7b8da439dedbe361 return objective_val, machine_component_points def assemblyline_optimizer_genetic(pcb_data, component_data): # basic parameter # crossover rate & mutation rate: 80% & 10% # population size: 200 # the number of generation: 500 crossover_rate, mutation_rate = 0.8, 0.1 population_size, n_generations = 500, 500 # the number of placement points, the number of available feeders, and nozzle type of component respectively component_points, component_feeders, component_nozzle = defaultdict(int), defaultdict(int), defaultdict(str) for data in pcb_data.iterrows(): part_index = component_data[component_data['part'] == data[1]['part']].index.tolist()[0] nozzle = component_data.loc[part_index]['nz'] component_points[part_index] += 1 component_feeders[part_index] = component_data.loc[part_index]['feeder-limit'] component_nozzle[part_index] = nozzle component_points = sorted(component_points.items(), key=lambda x: x[0]) # 决定染色体排列顺序 # population initialization best_popval = [] population = selective_initialization(component_points, component_feeders, population_size) with tqdm(total=n_generations) as pbar: pbar.set_description('genetic algorithm process for PCB assembly line balance') new_population = [] for _ in range(n_generations): # calculate fitness value pop_val = [] for individual in population: val, assigned_points = cal_individual_val(component_points, component_nozzle, individual) pop_val.append(max(val)) best_popval.append(min(pop_val)) select_index = get_top_k_value(pop_val, population_size - len(new_population), reverse=False) population = [population[idx] for idx in select_index] pop_val = [pop_val[idx] for idx in select_index] population += new_population for individual in new_population: val, _ = cal_individual_val(component_points, component_nozzle, individual) pop_val.append(max(val)) # min-max convert max_val = max(pop_val) pop_val = list(map(lambda v: max_val - v, pop_val)) sum_pop_val = sum(pop_val) + 1e-10 pop_val = [v / sum_pop_val + 1e-3 for v in pop_val] # crossover and mutation new_population = [] for pop in range(population_size): if pop % 2 == 0 and np.random.random() < crossover_rate: index1 = roulette_wheel_selection(pop_val) while True: index2 = roulette_wheel_selection(pop_val) if index1 != index2: break offspring1, offspring2 = selective_crossover(component_points, component_feeders, population[index1], population[index2]) if np.random.random() < mutation_rate: offspring1 = constraint_swap_mutation(component_points, offspring1) if np.random.random() < mutation_rate: offspring2 = constraint_swap_mutation(component_points, offspring2) new_population.append(offspring1) new_population.append(offspring2) pbar.update(1) best_individual = population[np.argmax(pop_val)] _, assignment_result = cal_individual_val(component_points, component_nozzle, best_individual) # available feeder check for part_index, data in component_data.iterrows(): feeder_limit = data['feeder-limit'] for machine_index in range(max_machine_index): if assignment_result[machine_index][part_index]: feeder_limit -= 1 assert feeder_limit >= 0 return assignment_result