import copy import math import matplotlib.pyplot as plt import pandas as pd from base_optimizer.optimizer_scanbased import * from base_optimizer.optimizer_celldivision import * from base_optimizer.optimizer_hybridgenetic import * from base_optimizer.optimizer_feederpriority import * from dataloader import * from optimizer_genetic import * from optimizer_heuristic import * def deviation(data): assert len(data) > 0 average, variance = sum(data) / len(data), 0 for v in data: variance += (v - average) ** 2 return variance / len(data) def optimizer(pcb_data, component_data, assembly_line_optimizer, single_machine_optimizer): # todo: 由于吸嘴更换更因素的存在,在处理PCB8数据时,遗传算法因在负载均衡过程中对这一因素进行了考虑,性能更优 # assignment_result = assemblyline_optimizer_heuristic(pcb_data, component_data) assignment_result = assemblyline_optimizer_genetic(pcb_data, component_data) print(assignment_result) assignment_result_cpy = copy.deepcopy(assignment_result) placement_points, placement_time = [], [] partial_pcb_data, partial_component_data = defaultdict(pd.DataFrame), defaultdict(pd.DataFrame) for machine_index in range(max_machine_index): partial_pcb_data[machine_index] = pd.DataFrame(columns=pcb_data.columns) partial_component_data[machine_index] = component_data.copy(deep=True) placement_points.append(sum(assignment_result[machine_index])) assert sum(placement_points) == len(pcb_data) # === averagely assign available feeder === for part_index, data in component_data.iterrows(): feeder_limit = data['feeder-limit'] feeder_points = [assignment_result[machine_index][part_index] for machine_index in range(max_machine_index)] for machine_index in range(max_machine_index): if feeder_points[machine_index] == 0: continue arg_feeder = max(math.floor(feeder_points[machine_index] / sum(feeder_points) * data['feeder-limit']), 1) partial_component_data[machine_index].loc[part_index]['feeder-limit'] = arg_feeder feeder_limit -= arg_feeder for machine_index in range(max_machine_index): if feeder_limit <= 0: break if feeder_points[machine_index] == 0: continue partial_component_data[machine_index].loc[part_index]['feeder-limit'] += 1 feeder_limit -= 1 for machine_index in range(max_machine_index): if feeder_points[machine_index] > 0: assert partial_component_data[machine_index].loc[part_index]['feeder-limit'] > 0 # === assign placements === component_machine_index = [0 for _ in range(len(component_data))] for _, data in pcb_data.iterrows(): part_index = component_data[component_data['part'] == data['part']].index.tolist()[0] while True: machine_index = component_machine_index[part_index] if assignment_result[machine_index][part_index] == 0: component_machine_index[part_index] += 1 machine_index += 1 else: break assignment_result[machine_index][part_index] -= 1 partial_pcb_data[machine_index] = pd.concat([partial_pcb_data[machine_index], pd.DataFrame(data).T]) # === adjust the number of available feeders for single optimization separately === for machine_index, data in partial_pcb_data.items(): data = data.reset_index(drop=True) if len(data) == 0: continue part_info = [] # part info list:(part index, part points, available feeder-num, upper feeder-num) for part_index, cp_data in partial_component_data[machine_index].iterrows(): if assignment_result_cpy[machine_index][part_index]: part_info.append( [part_index, assignment_result_cpy[machine_index][part_index], 1, cp_data['feeder-limit']]) part_info = sorted(part_info, key=lambda x: x[1], reverse=True) start_index, end_index = 0, min(max_head_index - 1, len(part_info) - 1) while start_index < len(part_info): assign_part_point, assign_part_index = [], [] for idx_ in range(start_index, end_index + 1): for _ in range(part_info[idx_][2]): assign_part_point.append(part_info[idx_][1] / part_info[idx_][2]) assign_part_index.append(idx_) variance = deviation(assign_part_point) while start_index != end_index: part_info_index = assign_part_index[np.argmax(assign_part_point)] if part_info[part_info_index][2] < part_info[part_info_index][3]: # 供料器数目上限的限制 part_info[part_info_index][2] += 1 end_index -= 1 new_assign_part_point, new_assign_part_index = [], [] for idx_ in range(start_index, end_index + 1): for _ in range(part_info[idx_][2]): new_assign_part_point.append(part_info[idx_][1] / part_info[idx_][2]) new_assign_part_index.append(idx_) new_variance = deviation(new_assign_part_point) if variance < new_variance: part_info[part_info_index][2] -= 1 end_index += 1 break variance = new_variance assign_part_index, assign_part_point = new_assign_part_index, new_assign_part_point else: break start_index = end_index + 1 end_index = min(start_index + max_head_index - 1, len(part_info) - 1) # update available feeder number max_avl_feeder = max(part_info, key=lambda x: x[2])[2] for info in part_info: partial_component_data[machine_index].loc[info[0]]['feeder-limit'] = math.ceil(info[2] / max_avl_feeder) placement_time.append(base_optimizer(machine_index + 1, data, partial_component_data[machine_index], feeder_data=pd.DataFrame(columns=['slot', 'part', 'arg']), method=single_machine_optimizer, hinter=True)) average_time, standard_deviation_time = sum(placement_time) / max_machine_index, 0 for machine_index in range(max_machine_index): print('assembly time for machine ' + str(machine_index + 1) + ': ' + str( placement_time[machine_index]) + ' s, ' + 'total placements: ' + str(placement_points[machine_index])) standard_deviation_time += pow(placement_time[machine_index] - average_time, 2) standard_deviation_time /= max_machine_index standard_deviation_time = math.sqrt(standard_deviation_time) print('finial assembly time: ' + str(max(placement_time)) + 's, standard deviation: ' + str(standard_deviation_time)) # todo: 不同类型元件的组装时间差异 def base_optimizer(machine_index, pcb_data, component_data, feeder_data=None, method='', hinter=False): if method == 'cell_division': # 基于元胞分裂的遗传算法 component_result, cycle_result, feeder_slot_result = optimizer_celldivision(pcb_data, component_data, hinter=False) placement_result, head_sequence = greedy_placement_route_generation(component_data, pcb_data, component_result, cycle_result, feeder_slot_result) elif method == 'feeder_scan': # 基于基座扫描的供料器优先算法 # 第1步:分配供料器位置 nozzle_pattern = feeder_allocate(component_data, pcb_data, feeder_data, figure=False) # 第2步:扫描供料器基座,确定元件拾取的先后顺序 component_result, cycle_result, feeder_slot_result = feeder_base_scan(component_data, pcb_data, feeder_data, nozzle_pattern) # 第3步:贴装路径规划 placement_result, head_sequence = greedy_placement_route_generation(component_data, pcb_data, component_result, cycle_result, feeder_slot_result) # placement_result, head_sequence = beam_search_for_route_generation(component_data, pcb_data, component_result, # cycle_result, feeder_slot_result) elif method == 'hybrid_genetic': # 基于拾取组的混合遗传算法 component_result, cycle_result, feeder_slot_result, placement_result, head_sequence = optimizer_hybrid_genetic( pcb_data, component_data, hinter=False) elif method == 'aggregation': # 基于batch-level的整数规划 + 启发式算法 component_result, cycle_result, feeder_slot_result, placement_result, head_sequence = optimizer_aggregation( component_data, pcb_data) elif method == 'genetic_scanning': component_result, cycle_result, feeder_slot_result, placement_result, head_sequence = optimizer_genetic_scanning( component_data, pcb_data, hinter=False) else: raise 'method is not existed' if hinter: optimization_assign_result(component_data, pcb_data, component_result, cycle_result, feeder_slot_result, nozzle_hinter=True, component_hinter=False, feeder_hinter=False) print('----- Placement machine ' + str(machine_index) + ' ----- ') print('-Cycle counter: {}'.format(sum(cycle_result))) total_nozzle_change_counter, total_pick_counter = 0, 0 total_pick_movement = 0 assigned_nozzle = ['' if idx == -1 else component_data.loc[idx]['nz'] for idx in component_result[0]] for cycle in range(len(cycle_result)): pick_slot = set() for head in range(max_head_index): if (idx := component_result[cycle][head]) == -1: continue nozzle = component_data.loc[idx]['nz'] if nozzle != assigned_nozzle[head]: if assigned_nozzle[head] != '': total_nozzle_change_counter += 1 assigned_nozzle[head] = nozzle pick_slot.add(feeder_slot_result[cycle][head] - head * interval_ratio) total_pick_counter += len(pick_slot) * cycle_result[cycle] pick_slot = list(pick_slot) pick_slot.sort() for idx in range(len(pick_slot) - 1): total_pick_movement += abs(pick_slot[idx+1] - pick_slot[idx]) print('-Nozzle change counter: {}'.format(total_nozzle_change_counter)) print('-Pick operation counter: {}'.format(total_pick_counter)) print('-Pick movement: {}'.format(total_pick_movement)) print('------------------------------ ') # 估算贴装用时 return placement_time_estimate(component_data, pcb_data, component_result, cycle_result, feeder_slot_result, placement_result, head_sequence, hinter=False) @timer_wrapper def main(): # warnings.simplefilter('ignore') # 参数解析 parser = argparse.ArgumentParser(description='assembly line optimizer implementation') parser.add_argument('--filename', default='PCB.txt', type=str, help='load pcb data') parser.add_argument('--auto_register', default=1, type=int, help='register the component according the pcb data') parser.add_argument('--base_optimizer', default='feeder_scan', type=str, help='base optimizer for single machine') parser.add_argument('--assembly_optimizer', default='heuristic', type=str, help='optimizer for PCB Assembly Line') parser.add_argument('--feeder_limit', default=1, type=int, help='the upper feeder limit for each type of component') params = parser.parse_args() # 结果输出显示所有行和列 pd.set_option('display.max_columns', None) pd.set_option('display.max_rows', None) # 加载PCB数据 pcb_data, component_data, _ = load_data(params.filename, default_feeder_limit=params.feeder_limit, cp_auto_register=params.auto_register) # 加载PCB数据 optimizer(pcb_data, component_data, params.assembly_optimizer, params.base_optimizer) if __name__ == '__main__': main()