修改文件名属性
This commit is contained in:
268
lineopt_genetic.py
Normal file
268
lineopt_genetic.py
Normal file
@ -0,0 +1,268 @@
|
||||
# implementation of <<An integrated allocation method for the PCB assembly line balancing problem with nozzle changes>>
|
||||
from base_optimizer.optimizer_common import *
|
||||
from lineopt_hyperheuristic import *
|
||||
|
||||
|
||||
def selective_initialization(component_points, component_feeders, population_size, machine_number):
|
||||
population = [] # population initialization
|
||||
for _ in range(population_size):
|
||||
individual = []
|
||||
for part_index, points in component_points:
|
||||
if points == 0:
|
||||
continue
|
||||
# 可用机器数
|
||||
avl_machine_num = random.randint(1, min(machine_number, component_feeders[part_index], points))
|
||||
|
||||
selective_possibility = []
|
||||
for p in range(1, avl_machine_num + 1):
|
||||
selective_possibility.append(pow(2, avl_machine_num - p + 1))
|
||||
|
||||
sel_machine_num = random_selective([p + 1 for p in range(avl_machine_num)], selective_possibility) # 选择的机器数
|
||||
sel_machine_set = random.sample([p for p in range(machine_number)], sel_machine_num)
|
||||
|
||||
sel_machine_points = [1 for _ in range(sel_machine_num)]
|
||||
for p in range(sel_machine_num - 1):
|
||||
if points == sum(sel_machine_points):
|
||||
break
|
||||
assign_points = random.randint(1, points - sum(sel_machine_points))
|
||||
sel_machine_points[p] += assign_points
|
||||
|
||||
if sum(sel_machine_points) < points:
|
||||
sel_machine_points[-1] += (points - sum(sel_machine_points))
|
||||
|
||||
# code component allocation into chromosome
|
||||
for p in range(machine_number):
|
||||
if p in sel_machine_set:
|
||||
individual += [0 for _ in range(sel_machine_points[0])]
|
||||
sel_machine_points.pop(0)
|
||||
individual.append(1)
|
||||
individual.pop(-1)
|
||||
|
||||
population.append(individual)
|
||||
return population
|
||||
|
||||
|
||||
def selective_crossover(component_points, component_feeders, mother, father, machine_number, non_decelerating=True):
|
||||
assert len(mother) == len(father)
|
||||
|
||||
offspring1, offspring2 = mother.copy(), father.copy()
|
||||
one_counter, feasible_cut_line = 0, []
|
||||
|
||||
idx = 0
|
||||
for part_index, points in component_points.items():
|
||||
one_counter = 0
|
||||
|
||||
idx_, mother_cut_line, father_cut_line = 0, [-1], [-1]
|
||||
for idx_, gene in enumerate(mother[idx: idx + points + machine_number - 1]):
|
||||
if gene:
|
||||
mother_cut_line.append(idx_)
|
||||
mother_cut_line.append(idx_ + 1)
|
||||
|
||||
for idx_, gene in enumerate(father[idx: idx + points + machine_number - 1]):
|
||||
if gene:
|
||||
father_cut_line.append(idx_)
|
||||
father_cut_line.append(idx_ + 1)
|
||||
|
||||
for offset in range(points + machine_number - 1):
|
||||
if mother[idx + offset] == 1:
|
||||
one_counter += 1
|
||||
if father[idx + offset] == 1:
|
||||
one_counter -= 1
|
||||
|
||||
# first constraint: the total number of '1's (the number of partitions) in the chromosome is unchanged
|
||||
if one_counter != 0 or offset == 0 or offset == points + machine_number - 2:
|
||||
continue
|
||||
|
||||
# the selected cut-line should guarantee there are the same or a larger number unassigned machine
|
||||
# for each component type
|
||||
n_bro, n_new = 0, 0
|
||||
if mother[idx + offset] and mother[idx + offset + 1]:
|
||||
n_bro += 1
|
||||
if father[idx + offset] and father[idx + offset + 1]:
|
||||
n_bro += 1
|
||||
if mother[idx + offset] and father[idx + offset + 1]:
|
||||
n_new += 1
|
||||
if father[idx + offset] and mother[idx + offset + 1]:
|
||||
n_new += 1
|
||||
|
||||
# second constraint: non_decelerating or accelerating crossover
|
||||
# non_decelerating or accelerating means that the number of machine without workload is increased
|
||||
if n_new < n_bro or (n_new == n_bro and not non_decelerating):
|
||||
continue
|
||||
|
||||
# third constraint (customized constraint):
|
||||
# no more than the maximum number of available machine for each component type
|
||||
new_mother_cut_line, new_father_cut_line = [], []
|
||||
for idx_ in range(machine_number + 1):
|
||||
if mother_cut_line[idx_] <= offset:
|
||||
new_mother_cut_line.append(mother_cut_line[idx_])
|
||||
else:
|
||||
new_father_cut_line.append(mother_cut_line[idx_])
|
||||
|
||||
if father_cut_line[idx_] <= offset:
|
||||
new_father_cut_line.append(father_cut_line[idx_])
|
||||
else:
|
||||
new_mother_cut_line.append(father_cut_line[idx_])
|
||||
|
||||
sorted(new_mother_cut_line, reverse=False)
|
||||
sorted(new_father_cut_line, reverse=False)
|
||||
n_mother_machine, n_father_machine = 0, 0
|
||||
|
||||
for idx_ in range(machine_number):
|
||||
if new_mother_cut_line[idx_ + 1] - new_mother_cut_line[idx_] > 1:
|
||||
n_mother_machine += 1
|
||||
|
||||
if new_father_cut_line[idx_ + 1] - new_father_cut_line[idx_] > 1:
|
||||
n_father_machine += 1
|
||||
|
||||
if n_mother_machine > component_feeders[part_index] or n_father_machine > component_feeders[part_index]:
|
||||
continue
|
||||
|
||||
feasible_cut_line.append(idx + offset)
|
||||
|
||||
idx += (points + machine_number - 1)
|
||||
|
||||
if len(feasible_cut_line) == 0:
|
||||
return offspring1, offspring2
|
||||
|
||||
cut_line_idx = feasible_cut_line[random.randint(0, len(feasible_cut_line) - 1)]
|
||||
offspring1, offspring2 = mother[:cut_line_idx + 1] + father[cut_line_idx + 1:], father[:cut_line_idx + 1] + mother[
|
||||
cut_line_idx + 1:]
|
||||
return offspring1, offspring2
|
||||
|
||||
|
||||
def cal_individual_val(component_points, component_nozzle, machine_number, individual, estimator):
|
||||
idx, objective_val = 0, []
|
||||
machine_component_points = [[] for _ in range(machine_number)]
|
||||
|
||||
# decode the component allocation
|
||||
for part_index, points in component_points.items():
|
||||
component_gene = individual[idx: idx + points + machine_number - 1]
|
||||
machine_idx, component_counter = 0, 0
|
||||
for gene in component_gene:
|
||||
if gene:
|
||||
machine_component_points[machine_idx].append(component_counter)
|
||||
machine_idx += 1
|
||||
component_counter = 0
|
||||
else:
|
||||
component_counter += 1
|
||||
machine_component_points[-1].append(component_counter)
|
||||
idx += (points + machine_number - 1)
|
||||
|
||||
objective_val = 0
|
||||
for machine_idx in range(machine_number):
|
||||
machine_points = sum(machine_component_points[machine_idx]) # num of placement points
|
||||
if machine_points == 0:
|
||||
continue
|
||||
|
||||
cp_points, cp_nozzle = defaultdict(int), defaultdict(str)
|
||||
for part_index, points in enumerate(machine_component_points[machine_idx]):
|
||||
if points == 0:
|
||||
continue
|
||||
cp_points[part_index], cp_nozzle[part_index] = points, component_nozzle[part_index]
|
||||
objective_val = max(objective_val, estimator.predict(cp_points, cp_nozzle))
|
||||
return objective_val, machine_component_points
|
||||
|
||||
|
||||
def individual_convert(component_points, individual):
|
||||
machine_number = len(individual)
|
||||
machine_component_points = [[] for _ in range(machine_number)]
|
||||
idx = 0
|
||||
# decode the component allocation
|
||||
for comp_idx, points in component_points:
|
||||
component_gene = individual[idx: idx + points + machine_number - 1]
|
||||
machine_idx, component_counter = 0, 0
|
||||
for gene in component_gene:
|
||||
if gene:
|
||||
machine_component_points[machine_idx].append(component_counter)
|
||||
machine_idx += 1
|
||||
component_counter = 0
|
||||
else:
|
||||
component_counter += 1
|
||||
machine_component_points[-1].append(component_counter)
|
||||
idx += (points + machine_number - 1)
|
||||
|
||||
return machine_component_points
|
||||
|
||||
|
||||
def line_optimizer_genetic(component_data, machine_number):
|
||||
# basic parameter
|
||||
# crossover rate & mutation rate: 80% & 10%
|
||||
# population size: 200
|
||||
# the number of generation: 500
|
||||
crossover_rate, mutation_rate = 0.8, 0.1
|
||||
population_size, n_generations = 200, 500
|
||||
|
||||
estimator = HeuristicEstimator()
|
||||
# the number of placement points, the number of available feeders, and nozzle type of component respectively
|
||||
cp_points, cp_feeders, cp_nozzle = defaultdict(int), defaultdict(int), defaultdict(int)
|
||||
for part_index, data in component_data.iterrows():
|
||||
cp_points[part_index] += data.points
|
||||
cp_feeders[part_index], cp_nozzle[part_index] = data.fdn, data.nz
|
||||
|
||||
# population initialization
|
||||
population = selective_initialization(sorted(cp_points.items(), key=lambda x: x[0]), cp_feeders, population_size,
|
||||
machine_number)
|
||||
with tqdm(total=n_generations) as pbar:
|
||||
pbar.set_description('genetic algorithm process for PCB assembly line balance')
|
||||
|
||||
new_population = []
|
||||
for _ in range(n_generations):
|
||||
# calculate fitness value
|
||||
pop_val = []
|
||||
for individual in population:
|
||||
val, assigned_points = cal_individual_val(cp_points, cp_nozzle, machine_number, individual, estimator)
|
||||
pop_val.append(val)
|
||||
|
||||
select_index = get_top_k_value(pop_val, population_size - len(new_population), reverse=False)
|
||||
population = [population[idx] for idx in select_index]
|
||||
pop_val = [pop_val[idx] for idx in select_index]
|
||||
|
||||
population += new_population
|
||||
for individual in new_population:
|
||||
val, _ = cal_individual_val(cp_points, cp_nozzle, machine_number, individual, estimator)
|
||||
pop_val.append(val)
|
||||
|
||||
# min-max convert
|
||||
max_val = max(pop_val)
|
||||
pop_val = list(map(lambda v: max_val - v, pop_val))
|
||||
sum_pop_val = sum(pop_val) + 1e-10
|
||||
pop_val = [v / sum_pop_val + 1e-3 for v in pop_val]
|
||||
|
||||
# crossover and mutation
|
||||
new_population = []
|
||||
for pop in range(population_size):
|
||||
if pop % 2 == 0 and np.random.random() < crossover_rate:
|
||||
index1 = roulette_wheel_selection(pop_val)
|
||||
while True:
|
||||
index2 = roulette_wheel_selection(pop_val)
|
||||
if index1 != index2:
|
||||
break
|
||||
|
||||
offspring1, offspring2 = selective_crossover(cp_points, cp_feeders,
|
||||
population[index1], population[index2], machine_number)
|
||||
|
||||
if np.random.random() < mutation_rate:
|
||||
offspring1 = constraint_swap_mutation(cp_points, offspring1, machine_number)
|
||||
|
||||
if np.random.random() < mutation_rate:
|
||||
offspring2 = constraint_swap_mutation(cp_points, offspring2, machine_number)
|
||||
|
||||
new_population.append(offspring1)
|
||||
new_population.append(offspring2)
|
||||
|
||||
pbar.update(1)
|
||||
|
||||
best_individual = population[np.argmax(pop_val)]
|
||||
val, assignment_result = cal_individual_val(cp_points, cp_nozzle, machine_number, best_individual, estimator)
|
||||
|
||||
print('final value: ', val)
|
||||
# available feeder check
|
||||
for part_index, data in component_data.iterrows():
|
||||
feeder_limit = data.fdn
|
||||
for machine_index in range(machine_number):
|
||||
if assignment_result[machine_index][part_index]:
|
||||
feeder_limit -= 1
|
||||
assert feeder_limit >= 0
|
||||
|
||||
return assignment_result
|
Reference in New Issue
Block a user