调整工程架构,增补了几种算法,初步添加神经网路训练拟合代码

This commit is contained in:
2024-03-29 22:10:07 +08:00
parent 800057e000
commit bae7e4e2c3
18 changed files with 2459 additions and 354 deletions

View File

@ -1,12 +1,8 @@
import copy
import math
import random
import numpy as np
from base_optimizer.optimizer_common import *
def objective_value_calculate(component_assignment, component_nozzle, task_block_weight):
# 生产过程中不允许吸嘴更换/点的拾取贴装仅与供料器槽位/模组相关
def objective_value_calculate(component_assignment, component_nozzle, task_block_weight, machine_number):
machine_assembly_time = []
for machine_index in range(max_machine_index):
task_block_number, total_point_number = 0, sum(component_assignment[machine_index])
@ -39,10 +35,10 @@ def objective_value_calculate(component_assignment, component_nozzle, task_block
return max(machine_assembly_time)
def random_component_assignment(component_points, component_nozzle, component_feeders, task_block_weight):
def random_component_assignment(component_points, component_nozzle, component_feeders, task_block_weight, machine_number):
component_points_cpy = copy.deepcopy(component_points)
component_number = len(component_points_cpy)
assignment_result = [[0 for _ in range(component_number)] for _ in range(max_machine_index)]
assignment_result = [[0 for _ in range(component_number)] for _ in range(machine_number)]
# == the set of feasible component type for each nozzle type
nozzle_part_list = defaultdict(list)
@ -52,7 +48,7 @@ def random_component_assignment(component_points, component_nozzle, component_fe
selected_part = []
for part_list in nozzle_part_list.values():
part = random.sample(part_list, 1)[0]
machine_index = random.randint(0, max_machine_index - 1)
machine_index = random.randint(0, machine_number - 1)
assignment_result[machine_index][part] += 1
component_points_cpy[part] -= 1
@ -63,24 +59,24 @@ def random_component_assignment(component_points, component_nozzle, component_fe
if part in selected_part:
continue
assignment_result[random.randint(0, max_machine_index - 1)][part] += 1
assignment_result[random.randint(0, machine_number - 1)][part] += 1
component_points_cpy[part] -= 1
machine_assign = list(range(max_machine_index))
machine_assign = list(range(machine_number))
random.shuffle(machine_assign)
finished_assign_counter = 0
while finished_assign_counter < component_number:
# todo: feeder limit restriction
for machine_index in machine_assign:
part = random.randint(0, component_number - 1)
feeder_counter = 0
for idx in range(max_machine_index):
for idx in range(machine_number):
if assignment_result[idx][part] > 0 or idx == machine_index:
feeder_counter += 1
if component_points_cpy[part] == 0 or feeder_counter > component_feeders[part]:
continue
# feeder limit restriction
points = random.randint(1, component_points_cpy[part])
assignment_result[machine_index][part] += points
component_points_cpy[part] -= points
@ -96,15 +92,16 @@ def greedy_component_assignment(component_points, component_nozzle, component_fe
pass # 不清楚原文想说什么
def local_search_component_assignment(component_points, component_nozzle, component_feeders, task_block_weight):
def local_search_component_assignment(component_points, component_nozzle, component_feeders, task_block_weight,
machine_number):
# maximum number of iterations : 5000
# maximum number of unsuccessful iterations: 50
component_number = len(component_points)
iteration_counter, unsuccessful_iteration_counter = 5000, 50
optimal_val, optimal_assignment = random_component_assignment(component_points, component_nozzle, component_feeders,
task_block_weight)
task_block_weight, machine_number)
for _ in range(iteration_counter):
machine_index = random.randint(0, max_machine_index - 1)
machine_index = random.randint(0, machine_number - 1)
if sum(optimal_assignment[machine_index]) == 0:
continue
@ -120,9 +117,9 @@ def local_search_component_assignment(component_points, component_nozzle, compon
swap_machine_index = None
while cyclic_counter <= 2 * machine_index:
cyclic_counter += 1
swap_machine_index = random.randint(0, max_machine_index - 1)
swap_machine_index = random.randint(0, machine_number - 1)
feeder_available = 0
for machine in range(max_machine_index):
for machine in range(machine_number):
if optimal_assignment[machine][component_index] or machine == swap_machine_index:
feeder_available += 1
@ -143,18 +140,18 @@ def local_search_component_assignment(component_points, component_nozzle, compon
return optimal_val, optimal_assignment
def reconfig_crossover_operation(component_points, component_feeders, parent1, parent2):
def reconfig_crossover_operation(component_points, component_feeders, parent1, parent2, machine_number):
offspring1, offspring2 = copy.deepcopy(parent1), copy.deepcopy(parent2)
component_number = len(component_points)
# === crossover ===
mask_bit = []
for _ in range(max_machine_index):
for _ in range(machine_number):
mask_bit.append(random.randint(0, 1))
if sum(mask_bit) == 0 or sum(mask_bit) == max_machine_index:
if sum(mask_bit) == 0 or sum(mask_bit) == machine_number:
return offspring1, offspring2
for machine_index in range(max_machine_index):
for machine_index in range(machine_number):
if mask_bit:
offspring1[machine_index] = copy.deepcopy(parent1[machine_index])
offspring2[machine_index] = copy.deepcopy(parent2[machine_index])
@ -166,20 +163,20 @@ def reconfig_crossover_operation(component_points, component_feeders, parent1, p
# equally to reach the correct number
for component_index in range(component_number):
for offspring in [offspring1, offspring2]:
additional_points = sum([offspring[mt][component_index] for mt in range(max_machine_index)]) - \
additional_points = sum([offspring[mt][component_index] for mt in range(machine_number)]) - \
component_points[component_index]
if additional_points > 0:
# if a component type has more placements, decrease the assigned values on every head equally keeping
# the proportion of the number of placement among the heads
points_list = []
for machine_index in range(max_machine_index):
for machine_index in range(machine_number):
points = math.floor(
additional_points * offspring[machine_index][component_index] / component_points[component_index])
points_list.append(points)
offspring[machine_index][component_index] -= points
additional_points -= sum(points_list)
for machine_index in range(max_machine_index):
for machine_index in range(machine_number):
if additional_points == 0:
break
if offspring[machine_index][component_index] == 0:
@ -189,7 +186,7 @@ def reconfig_crossover_operation(component_points, component_feeders, parent1, p
elif additional_points < 0:
# otherwise, increase the assigned nonzero values equally
machine_set = []
for machine_index in range(max_machine_index):
for machine_index in range(machine_number):
if offspring[machine_index][component_index] == 0:
continue
machine_set.append(machine_index)
@ -205,29 +202,23 @@ def reconfig_crossover_operation(component_points, component_feeders, parent1, p
offspring[machine_index][component_index] += 1
additional_points -= 1
for part in range(component_number):
pt = 0
for mt in range(max_machine_index):
pt+= offspring1[mt][part]
if pt!=component_points[part]:
print('')
for part in range(component_number):
pt = 0
for mt in range(max_machine_index):
pt+= offspring2[mt][part]
if pt!=component_points[part]:
print('')
# === 结果校验 ===
for offspring in [offspring1, offspring2]:
for part in range(component_number):
pt = sum(offspring[mt][part] for mt in range(machine_number))
assert pt == component_points[part]
return offspring1, offspring2
def reconfig_mutation_operation(component_feeders, parent):
def reconfig_mutation_operation(component_feeders, parent, machine_number):
offspring = copy.deepcopy(parent)
swap_direction = random.randint(0, 1)
if swap_direction:
swap_machine1, swap_machine2 = random.sample(list(range(max_machine_index)), 2)
swap_machine1, swap_machine2 = random.sample(list(range(machine_number)), 2)
else:
swap_machine2, swap_machine1 = random.sample(list(range(max_machine_index)), 2)
swap_machine2, swap_machine1 = random.sample(list(range(machine_number)), 2)
component_list = []
for component_index, points in enumerate(offspring[swap_machine1]):
@ -248,7 +239,7 @@ def reconfig_mutation_operation(component_feeders, parent):
return offspring
def evolutionary_component_assignment(component_points, component_nozzle, component_feeders, task_block_weight):
def evolutionary_component_assignment(component_points, component_nozzle, component_feeders, task_block_weight, machine_number):
# population size: 10
# probability of the mutation: 0.1
# probability of the crossover: 0.8
@ -260,7 +251,8 @@ def evolutionary_component_assignment(component_points, component_nozzle, compon
population = []
for _ in range(population_size):
population.append(
random_component_assignment(component_points, component_nozzle, component_feeders, task_block_weight)[1])
random_component_assignment(component_points, component_nozzle, component_feeders, task_block_weight,
machine_number)[1])
with tqdm(total=generation_number) as pbar:
pbar.set_description('evolutionary algorithm process for PCB assembly line balance')
@ -270,7 +262,7 @@ def evolutionary_component_assignment(component_points, component_nozzle, compon
# calculate fitness value
pop_val = []
for individual in population:
pop_val.append(objective_value_calculate(individual, component_nozzle, task_block_weight))
pop_val.append(objective_value_calculate(individual, component_nozzle, task_block_weight, machine_number))
select_index = get_top_k_value(pop_val, population_size - len(new_population), reverse=False)
population = [population[idx] for idx in select_index]
@ -278,7 +270,7 @@ def evolutionary_component_assignment(component_points, component_nozzle, compon
population += new_population
for individual in new_population:
pop_val.append(objective_value_calculate(individual, component_nozzle, task_block_weight))
pop_val.append(objective_value_calculate(individual, component_nozzle, task_block_weight, machine_number))
# min-max convert
max_val = max(pop_val)
@ -297,13 +289,14 @@ def evolutionary_component_assignment(component_points, component_nozzle, compon
break
offspring1, offspring2 = reconfig_crossover_operation(component_points, component_feeders,
population[index1], population[index2])
population[index1], population[index2],
machine_number)
if np.random.random() < mutation_rate:
offspring1 = reconfig_mutation_operation(component_feeders, offspring1)
offspring1 = reconfig_mutation_operation(component_feeders, offspring1, machine_number)
if np.random.random() < mutation_rate:
offspring2 = reconfig_mutation_operation(component_feeders, offspring2)
offspring2 = reconfig_mutation_operation(component_feeders, offspring2, machine_number)
new_population.append(offspring1)
new_population.append(offspring2)
@ -313,7 +306,7 @@ def evolutionary_component_assignment(component_points, component_nozzle, compon
return min(pop_val), population[np.argmin(pop_val)]
def reconfiguration_optimizer(pcb_data, component_data):
def reconfiguration_optimizer(pcb_data, component_data, machine_number):
# === data preparation ===
component_number = len(component_data)
@ -335,20 +328,28 @@ def reconfiguration_optimizer(pcb_data, component_data):
# === assignment of heads to modules is omitted ===
optimal_assignment, optimal_val = [], None
task_block_weight = 5 # element from list [0, 1, 2, 5, 10]
task_block_weight = 5 # element from list [0, 1, 2, 5, 10] task_block ~= cycle
# === assignment of components to heads
for i in range(4):
for i in range(5):
if i == 0:
# random
val, assignment = random_component_assignment(component_points, component_nozzle, component_feeders,
task_block_weight)
task_block_weight, machine_number)
elif i == 1:
# brute force
# which is proved to be useless, since it only ran in reasonable time for the smaller test instances
continue
elif i == 2:
val, assignment = local_search_component_assignment(component_points, component_nozzle,
component_feeders, task_block_weight)
# local search
val, assignment = local_search_component_assignment(component_points, component_nozzle, component_feeders,
task_block_weight, machine_number)
elif i == 3:
# evolutionary
val, assignment = evolutionary_component_assignment(component_points, component_nozzle, component_feeders,
task_block_weight, machine_number)
else:
val, assignment = evolutionary_component_assignment(component_points, component_nozzle,
component_feeders, task_block_weight)
# greedy: unclear description
continue
if optimal_val is None or val < optimal_val:
optimal_val, optimal_assignment = val, assignment.copy()