调整工程架构,增补了几种算法,初步添加神经网路训练拟合代码

This commit is contained in:
2024-03-29 22:10:07 +08:00
parent 800057e000
commit bae7e4e2c3
18 changed files with 2459 additions and 354 deletions

View File

@ -0,0 +1,635 @@
from base_optimizer.optimizer_common import *
def convert_pcbdata_to_result(pcb_data, component_data):
component_result, cycle_result, feeder_slot_result = [], [], []
placement_result, head_sequence_result = [], []
assigned_part = [-1 for _ in range(max_head_index)]
assigned_slot = [-1 for _ in range(max_head_index)]
assigned_point = [-1 for _ in range(max_head_index)]
assigned_sequence = []
point_num = len(pcb_data) # total mount points num
for point_cnt in range(point_num + 1):
cycle_start = 1 if point_cnt == point_num else pcb_data.loc[point_cnt, 'cs']
if (cycle_start and point_cnt != 0) or -1 not in assigned_part:
if len(component_result) != 0 and component_result[-1] == assigned_part:
cycle_result[-1] += 1
else:
component_result.append(assigned_part)
feeder_slot_result.append(assigned_slot)
cycle_result.append(1)
# assigned_sequence = list(reversed(assigned_sequence)) # Samsung拾取顺序相反
placement_result.append(assigned_point)
head_sequence_result.append(assigned_sequence)
assigned_part = [-1 for _ in range(max_head_index)]
assigned_slot = [-1 for _ in range(max_head_index)]
assigned_point = [-1 for _ in range(max_head_index)]
assigned_sequence = []
if point_cnt == point_num:
break
slot = pcb_data.loc[point_cnt, 'fdr'].split(' ')[0]
if slot == 'A':
slot, part = 0, pcb_data.loc[point_cnt].part
else:
slot, part = int(slot[1:]), pcb_data.loc[point_cnt].fdr.split(' ', 1)[1]
head = pcb_data.loc[point_cnt].hd - 1
part_index = component_data[component_data.part == part].index.tolist()[0]
assigned_part[head] = part_index
assigned_slot[head] = slot
assigned_point[head] = point_cnt
assigned_sequence.append(head)
return component_result, cycle_result, feeder_slot_result, placement_result, head_sequence_result
# 绘制各周期从供料器周期拾取的元件位置
def pickup_cycle_schematic(feeder_slot_result, cycle_result):
plt.rcParams['font.sans-serif'] = ['KaiTi'] # 指定默认字体
plt.rcParams['axes.unicode_minus'] = False # 解决保存图像是负号'-'显示为方块的问题
# data
bar_width = .7
feeder_part = np.zeros(int(max_slot_index / 2), dtype=np.int)
for cycle in range(len(feeder_slot_result)):
label_str = '周期' + str(cycle + 1)
cur_feeder_part = np.zeros(int(max_slot_index / 2), dtype=np.int)
for slot in feeder_slot_result[cycle]:
if slot > 0:
cur_feeder_part[slot] += cycle_result[cycle]
plt.bar(np.arange(max_slot_index / 2), cur_feeder_part, bar_width, edgecolor='black', bottom=feeder_part,
label=label_str)
for slot in feeder_slot_result[cycle]:
if slot > 0:
feeder_part[slot] += cycle_result[cycle]
plt.legend()
plt.show()
def placement_route_schematic(pcb_data, component_result, cycle_result, feeder_slot_result, placement_result,
head_sequence, cycle=-1):
plt.figure('cycle {}'.format(cycle + 1))
pos_x, pos_y = [], []
for i in range(len(pcb_data)):
pos_x.append(pcb_data.loc[i]['x'] + stopper_pos[0])
pos_y.append(pcb_data.loc[i]['y'] + stopper_pos[1])
# plt.text(pcb_data.loc[i]['x'], pcb_data.loc[i]['y'] + 0.1, '%d' % i, ha='center', va = 'bottom', size = 8)
mount_pos = []
for head in head_sequence[cycle]:
index = placement_result[cycle][head]
plt.text(pos_x[index], pos_y[index] + 0.1, 'HD%d' % (head + 1), ha='center', va='bottom', size=10)
plt.plot([pos_x[index], pos_x[index] - head * head_interval], [pos_y[index], pos_y[index]], linestyle='-.',
color='black', linewidth=1)
mount_pos.append([pos_x[index] - head * head_interval, pos_y[index]])
plt.plot(mount_pos[-1][0], mount_pos[-1][1], marker='^', color='red', markerfacecolor='white')
# plt.text(mount_pos[-1][0], mount_pos[-1][1], '%d' % index, size=8)
# 绘制贴装路径
for i in range(len(mount_pos) - 1):
plt.plot([mount_pos[i][0], mount_pos[i + 1][0]], [mount_pos[i][1], mount_pos[i + 1][1]], color='blue',
linewidth=1)
draw_x, draw_y = [], []
for c in range(cycle, len(placement_result)):
for h in range(max_head_index):
i = placement_result[c][h]
if i == -1:
continue
draw_x.append(pcb_data.loc[i]['x'] + stopper_pos[0])
draw_y.append(pcb_data.loc[i]['y'] + stopper_pos[1])
# plt.text(draw_x[-1], draw_y[-1] - 5, '%d' % i, ha='center', va='bottom', size=10)
plt.scatter(draw_x, draw_y, s=8)
# 绘制供料器位置布局
for slot in range(max_slot_index // 2):
plt.scatter(slotf1_pos[0] + slot_interval * slot, slotf1_pos[1], marker='x', s=12, color='green')
plt.text(slotf1_pos[0] + slot_interval * slot, slotf1_pos[1] - 50, slot + 1, ha='center', va='bottom', size=8)
feeder_part, feeder_counter = {}, {}
placement_cycle = 0
for cycle_, components in enumerate(component_result):
for head, component in enumerate(components):
if component == -1:
continue
placement = placement_result[placement_cycle][head]
slot = feeder_slot_result[cycle_][head]
feeder_part[slot] = pcb_data.loc[placement]['part']
if slot not in feeder_counter.keys():
feeder_counter[slot] = 0
feeder_counter[slot] += cycle_result[cycle_]
placement_cycle += cycle_result[cycle_]
for slot, part in feeder_part.items():
plt.text(slotf1_pos[0] + slot_interval * (slot - 1), slotf1_pos[1] + 15,
part + ': ' + str(feeder_counter[slot]), ha='center', size=7, rotation=90)
plt.plot([slotf1_pos[0] - slot_interval / 2, slotf1_pos[0] + slot_interval * (max_slot_index // 2 - 1 + 0.5)],
[slotf1_pos[1] + 10, slotf1_pos[1] + 10], color = 'black')
plt.plot([slotf1_pos[0] - slot_interval / 2, slotf1_pos[0] + slot_interval * (max_slot_index // 2 - 1 + 0.5)],
[slotf1_pos[1] - 40, slotf1_pos[1] - 40], color = 'black')
for counter in range(max_slot_index // 2 + 1):
pos = slotf1_pos[0] + (counter - 0.5) * slot_interval
plt.plot([pos, pos], [slotf1_pos[1] + 10, slotf1_pos[1] - 40], color='black', linewidth=1)
# 绘制拾取路径
pick_slot = []
cycle_group = 0
while sum(cycle_result[0: cycle_group + 1]) < cycle:
cycle_group += 1
for head, slot in enumerate(feeder_slot_result[cycle_group]):
if slot == -1:
continue
pick_slot.append(slot - head * interval_ratio)
pick_slot = list(set(pick_slot))
pick_slot = sorted(pick_slot)
next_cycle_group = 0
next_pick_slot = max_slot_index
while sum(cycle_result[0: next_cycle_group + 1]) < cycle + 1:
next_cycle_group += 1
if next_cycle_group < len(feeder_slot_result):
for head, slot in enumerate(feeder_slot_result[cycle_group]):
if slot == -1:
continue
next_pick_slot = min(next_pick_slot, slot - head * interval_ratio)
# 前往PCB贴装
plt.plot([mount_pos[-1][0], slotf1_pos[0] + slot_interval * (pick_slot[-1] - 1)], [mount_pos[-1][1], slotf1_pos[1]],
color='blue', linewidth=1)
# 基座移动路径
plt.plot([slotf1_pos[0] + slot_interval * (pick_slot[0] - 1), slotf1_pos[0] + slot_interval * (pick_slot[-1] - 1)],
[slotf1_pos[1], slotf1_pos[1]], color='blue', linewidth=1)
# 返回基座取料
plt.plot([mount_pos[0][0], slotf1_pos[0] + slot_interval * (next_pick_slot - 1)], [mount_pos[0][1], slotf1_pos[1]],
color='blue', linewidth=1)
plt.show()
def save_placement_route_figure(file_name, pcb_data, component_result, cycle_result, feeder_slot_result,
placement_result, head_sequence):
path = 'result/' + file_name[:file_name.find('.')]
if not os.path.exists(path):
os.mkdir(path)
pos_x, pos_y = [], []
for i in range(len(pcb_data)):
pos_x.append(pcb_data.loc[i]['x'] + stopper_pos[0])
pos_y.append(pcb_data.loc[i]['y'] + stopper_pos[1])
# plt.text(pcb_data.loc[i]['x'], pcb_data.loc[i]['y'] + 0.1, '%d' % i, ha='center', va = 'bottom', size = 8)
with tqdm(total=100) as pbar:
pbar.set_description('save figure')
for cycle in range(len(placement_result)):
plt.figure(cycle)
mount_pos = []
for head in head_sequence[cycle]:
index = placement_result[cycle][head]
plt.text(pos_x[index], pos_y[index] + 0.1, 'HD%d' % (head + 1), ha='center', va='bottom', size=10)
plt.plot([pos_x[index], pos_x[index] - head * head_interval], [pos_y[index], pos_y[index]],
linestyle='-.', color='black', linewidth=1)
mount_pos.append([pos_x[index] - head * head_interval, pos_y[index]])
plt.plot(mount_pos[-1][0], mount_pos[-1][1], marker='^', color='red', markerfacecolor='white')
# 绘制贴装路径
for i in range(len(mount_pos) - 1):
plt.plot([mount_pos[i][0], mount_pos[i + 1][0]], [mount_pos[i][1], mount_pos[i + 1][1]], color='blue',
linewidth=1)
draw_x, draw_y = [], []
for c in range(cycle, len(placement_result)):
for h in range(max_head_index):
i = placement_result[c][h]
if i == -1:
continue
draw_x.append(pcb_data.loc[i]['x'] + stopper_pos[0])
draw_y.append(pcb_data.loc[i]['y'] + stopper_pos[1])
# plt.text(draw_x[-1], draw_y[-1] - 5, '%d' % i, ha='center', va='bottom', size=10)
plt.scatter(pos_x, pos_y, s=8)
# 绘制供料器位置布局
for slot in range(max_slot_index // 2):
plt.scatter(slotf1_pos[0] + slot_interval * slot, slotf1_pos[1], marker='x', s=12, color='green')
plt.text(slotf1_pos[0] + slot_interval * slot, slotf1_pos[1] - 50, slot + 1, ha='center', va='bottom', size=8)
feeder_part, feeder_counter = {}, {}
placement_cycle = 0
for cycle_, components in enumerate(component_result):
for head, component in enumerate(components):
if component == -1:
continue
placement = placement_result[placement_cycle][head]
slot = feeder_slot_result[cycle_][head]
feeder_part[slot] = pcb_data.loc[placement]['part']
if slot not in feeder_counter.keys():
feeder_counter[slot] = 0
feeder_counter[slot] += cycle_result[cycle_]
placement_cycle += cycle_result[cycle_]
for slot, part in feeder_part.items():
plt.text(slotf1_pos[0] + slot_interval * (slot - 1), slotf1_pos[1] + 15,
part + ': ' + str(feeder_counter[slot]), ha='center', size=7, rotation=90)
plt.plot(
[slotf1_pos[0] - slot_interval / 2, slotf1_pos[0] + slot_interval * (max_slot_index // 2 - 1 + 0.5)],
[slotf1_pos[1] + 10, slotf1_pos[1] + 10], color='black')
plt.plot(
[slotf1_pos[0] - slot_interval / 2, slotf1_pos[0] + slot_interval * (max_slot_index // 2 - 1 + 0.5)],
[slotf1_pos[1] - 40, slotf1_pos[1] - 40], color='black')
for counter in range(max_slot_index // 2 + 1):
pos = slotf1_pos[0] + (counter - 0.5) * slot_interval
plt.plot([pos, pos], [slotf1_pos[1] + 10, slotf1_pos[1] - 40], color='black', linewidth=1)
# 绘制拾取路径
pick_slot = []
cycle_group = 0
while sum(cycle_result[0: cycle_group + 1]) < cycle:
cycle_group += 1
for head, slot in enumerate(feeder_slot_result[cycle_group]):
if slot == -1:
continue
pick_slot.append(slot - head * interval_ratio)
pick_slot = list(set(pick_slot))
pick_slot = sorted(pick_slot)
plt.plot([mount_pos[0][0], slotf1_pos[0] + slot_interval * (pick_slot[0] - 1)],
[mount_pos[0][1], slotf1_pos[1]], color='blue', linewidth=1)
plt.plot([mount_pos[-1][0], slotf1_pos[0] + slot_interval * (pick_slot[-1] - 1)],
[mount_pos[-1][1], slotf1_pos[1]], color='blue', linewidth=1)
plt.plot([slotf1_pos[0] + slot_interval * (pick_slot[0] - 1),
slotf1_pos[0] + slot_interval * (pick_slot[-1] - 1)], [slotf1_pos[1], slotf1_pos[1]],
color='blue', linewidth=1)
plt.savefig(path + '/cycle_{}'.format(cycle + 1))
plt.close(cycle)
pbar.update(100 / len(placement_result))
def output_optimize_result(file_name, method, component_data, pcb_data, feeder_data, component_result, cycle_result,
feeder_slot_result, placement_result, head_sequence):
assert len(component_result) == len(feeder_slot_result)
if feeder_data is None:
warning_info = 'file: ' + file_name + ' optimize result is not existed!'
warnings.warn(warning_info, UserWarning)
return
output_data = pcb_data.copy(deep=True)
# 默认ANC参数
anc_list = defaultdict(list)
anc_list['CN065'] = list(range(14, 25, 2))
anc_list['CN220'] = list(range(15, 26, 2))
anc_list['CN140'] = list(range(26, 37, 2))
anc_list['CN400'] = list(range(27, 38, 2))
# 更新供料器组参数
for cycle_set in range(len(cycle_result)):
for head, component in enumerate(component_result[cycle_set]):
if component == -1:
continue
if feeder_data[feeder_data['slot'] == feeder_slot_result[cycle_set][head]].index.empty:
part = component_data.loc[component]['part']
feeder_data.loc[len(feeder_data.index)] = [feeder_slot_result[cycle_set][head], part, 0]
feeder_data.sort_values('slot', inplace=True, ascending=True, ignore_index=True)
placement_index = []
assigned_nozzle, assigned_anc_hole = ['' for _ in range(max_head_index)], [-1 for _ in range(max_head_index)]
for cycle_set in range(len(cycle_result)):
floor_cycle, ceil_cycle = sum(cycle_result[:cycle_set]), sum(cycle_result[:(cycle_set + 1)])
for cycle in range(floor_cycle, ceil_cycle):
cycle_start = True
cycle_nozzle = ['' for _ in range(max_head_index)]
head_indexes = [-1 for _ in range(max_head_index)]
for head in head_sequence[cycle]:
index_ = placement_result[cycle][head]
if index_ == -1:
continue
head_indexes[head] = index_
placement_index.append(index_)
output_data.loc[index_, 'cs'] = 1 if cycle_start else 0
output_data.loc[index_, 'cy'] = cycle + 1
output_data.loc[index_, 'hd'] = head + 1
cycle_start = False
# 供料器信息
slot = feeder_slot_result[cycle_set][head]
fdr = 'F' + str(slot) if slot < max_slot_index // 2 else 'R' + str(slot - max_slot_index // 2)
feeder_index = feeder_data[feeder_data['slot'] == slot].index.tolist()[0]
output_data.loc[index_, 'fdr'] = fdr + ' ' + feeder_data.loc[feeder_index, 'part']
# ANC信息
cycle_nozzle[head] = component_data.loc[component_result[cycle_set][head], 'nz']
for head in range(max_head_index):
nozzle = cycle_nozzle[head]
if nozzle == '':
continue
if nozzle != assigned_nozzle[head]:
# 已分配有吸嘴,卸载原吸嘴
if assigned_nozzle[head] != '':
anc_list[assigned_nozzle[head]].append(assigned_anc_hole[head])
anc_list[assigned_nozzle[head]] = sorted(anc_list[assigned_nozzle[head]])
# 安装新的吸嘴
assigned_nozzle[head] = nozzle
try:
assigned_anc_hole[head] = anc_list[nozzle][0]
except IndexError:
info = 'the number of nozzle for [' + nozzle + '] exceeds the quantity limit'
raise IndexError(info)
anc_list[nozzle].pop(0)
output_data.loc[head_indexes[head], 'nz'] = '1-' + str(assigned_anc_hole[head]) + ' ' + nozzle
output_data = output_data.reindex(placement_index)
output_data = output_data.reset_index(drop=True)
if 'desc' not in output_data.columns:
column_index = int(np.where(output_data.columns.values.reshape(-1) == 'part')[0][0])
output_data.insert(loc=column_index + 1, column='desc', value='')
if not os.path.exists('result/' + method):
os.makedirs('result/' + method)
file_name = method + '/' + file_name.split('.')[0] + '.xlsx'
output_data.to_excel('result/' + file_name, sheet_name='tb1', float_format='%.3f', na_rep='')
def optimization_assign_result(component_data, pcb_data, component_result, cycle_result, feeder_slot_result,
nozzle_hinter=False, component_hinter=False, feeder_hinter=False):
if nozzle_hinter:
columns = ['H{}'.format(i + 1) for i in range(max_head_index)] + ['cycle']
nozzle_assign = pd.DataFrame(columns=columns)
for cycle, components in enumerate(component_result):
nozzle_assign_row = len(nozzle_assign)
nozzle_assign.loc[nozzle_assign_row, 'cycle'] = cycle_result[cycle]
for head in range(max_head_index):
index = component_result[cycle][head]
if index == -1:
nozzle_assign.loc[nozzle_assign_row, 'H{}'.format(head + 1)] = ''
else:
nozzle = component_data.loc[index]['nz']
nozzle_assign.loc[nozzle_assign_row, 'H{}'.format(head + 1)] = nozzle
for head in range(max_head_index):
if nozzle_assign_row == 0 or nozzle_assign.loc[nozzle_assign_row - 1, 'H{}'.format(head + 1)] != \
nozzle_assign.loc[nozzle_assign_row, 'H{}'.format(head + 1)]:
break
else:
nozzle_assign.loc[nozzle_assign_row - 1, 'cycle'] += nozzle_assign.loc[nozzle_assign_row, 'cycle']
nozzle_assign.drop([len(nozzle_assign) - 1], inplace=True)
print(nozzle_assign)
print('')
if component_hinter:
columns = ['H{}'.format(i + 1) for i in range(max_head_index)] + ['cycle']
component_assign = pd.DataFrame(columns=columns)
for cycle, components in enumerate(component_result):
component_assign.loc[cycle, 'cycle'] = cycle_result[cycle]
for head in range(max_head_index):
index = component_result[cycle][head]
if index == -1:
component_assign.loc[cycle, 'H{}'.format(head + 1)] = ''
else:
part = component_data.loc[index]['part']
component_assign.loc[cycle, 'H{}'.format(head + 1)] = part
print(component_assign)
print('')
if feeder_hinter:
columns = ['H{}'.format(i + 1) for i in range(max_head_index)] + ['cycle']
feedr_assign = pd.DataFrame(columns=columns)
for cycle, components in enumerate(feeder_slot_result):
feedr_assign.loc[cycle, 'cycle'] = cycle_result[cycle]
for head in range(max_head_index):
slot = feeder_slot_result[cycle][head]
if slot == -1:
feedr_assign.loc[cycle, 'H{}'.format(head + 1)] = 'A'
else:
feedr_assign.loc[cycle, 'H{}'.format(head + 1)] = 'F{}'.format(
slot) if slot <= max_slot_index // 2 else 'R{}'.format(slot - max_head_index)
print(feedr_assign)
print('')
def placement_time_estimate(component_data, pcb_data, component_result, cycle_result, feeder_slot_result,
placement_result, head_sequence, hinter=True) -> float:
# === 校验 ===
total_points = 0
for cycle, components in enumerate(component_result):
for head, component in enumerate(components):
if component == -1:
continue
total_points += cycle_result[cycle]
if total_points != len(pcb_data):
warning_info = 'the number of placement points is not match with the PCB data. '
warnings.warn(warning_info, UserWarning)
return 0.
for placements in placement_result:
for placement in placements:
if placement == -1:
continue
total_points -= 1
if total_points != 0:
warnings.warn(
'the optimization result of component assignment result and placement result are not consistent. ',
UserWarning)
return 0.
feeder_arrangement = defaultdict(set)
for cycle, feeder_slots in enumerate(feeder_slot_result):
for head, slot in enumerate(feeder_slots):
if slot == -1:
continue
feeder_arrangement[component_result[cycle][head]].add(slot)
for part, data in component_data.iterrows():
if part in feeder_arrangement.keys() and data['feeder-limit'] < len(feeder_arrangement[part]):
info = 'the number of arranged feeder of [' + data['part'] + '] exceeds the quantity limit'
warnings.warn(info, UserWarning)
return 0.
total_pickup_time, total_round_time, total_place_time = .0, .0, 0 # 拾取用时、往返用时、贴装用时
total_operation_time = .0 # 操作用时
total_nozzle_change_counter = 0 # 总吸嘴更换次数
total_pick_counter = 0 # 总拾取次数
total_mount_distance, total_pick_distance = .0, .0 # 贴装距离、拾取距离
total_distance = 0 # 总移动距离
cur_pos, next_pos = anc_marker_pos, [0, 0] # 贴装头当前位置
# 初始化首个周期的吸嘴装配信息
nozzle_assigned = ['Empty' for _ in range(max_head_index)]
for head in range(max_head_index):
for cycle in range(len(component_result)):
idx = component_result[cycle][head]
if idx == -1:
continue
else:
nozzle_assigned[head] = component_data.loc[idx]['nz']
break
for cycle_set, _ in enumerate(component_result):
floor_cycle, ceil_cycle = sum(cycle_result[:cycle_set]), sum(cycle_result[:(cycle_set + 1)])
for cycle in range(floor_cycle, ceil_cycle):
pick_slot, mount_pos, mount_angle = [], [], []
nozzle_pick_counter, nozzle_put_counter = 0, 0 # 吸嘴更换次数统计(拾取/放置分别算一次)
for head in range(max_head_index):
if feeder_slot_result[cycle_set][head] != -1:
pick_slot.append(feeder_slot_result[cycle_set][head] - interval_ratio * head)
if component_result[cycle_set][head] == -1:
continue
nozzle = component_data.loc[component_result[cycle_set][head]]['nz']
if nozzle != nozzle_assigned[head]:
if nozzle_assigned[head] != 'Empty':
nozzle_put_counter += 1
nozzle_pick_counter += 1
nozzle_assigned[head] = nozzle
# ANC处进行吸嘴更换
if nozzle_pick_counter + nozzle_put_counter > 0:
next_pos = anc_marker_pos
move_time = max(axis_moving_time(cur_pos[0] - next_pos[0], 0),
axis_moving_time(cur_pos[1] - next_pos[1], 1))
total_round_time += move_time
total_distance += max(abs(cur_pos[0] - next_pos[0]), abs(cur_pos[1] - next_pos[1]))
cur_pos = next_pos
pick_slot = list(set(pick_slot))
pick_slot = sorted(pick_slot, reverse=True)
# 拾取路径(自右向左)
for idx, slot in enumerate(pick_slot):
if slot < max_slot_index // 2:
next_pos = [slotf1_pos[0] + slot_interval * (slot - 1), slotf1_pos[1]]
else:
next_pos = [slotr1_pos[0] - slot_interval * (max_slot_index - slot - 1), slotr1_pos[1]]
total_operation_time += t_pick
total_pick_counter += 1
move_time = max(axis_moving_time(cur_pos[0] - next_pos[0], 0),
axis_moving_time(cur_pos[1] - next_pos[1], 1))
if idx == 0:
total_round_time += move_time
else:
total_pickup_time += move_time
total_distance += max(abs(cur_pos[0] - next_pos[0]), abs(cur_pos[1] - next_pos[1]))
if slot != pick_slot[0]:
total_pick_distance += max(abs(cur_pos[0] - next_pos[0]), abs(cur_pos[1] - next_pos[1]))
cur_pos = next_pos
# 固定相机检测
for head in range(max_head_index):
if component_result[cycle_set][head] == -1:
continue
camera = component_data.loc[component_result[cycle_set][head]]['camera']
if camera == '固定相机':
next_pos = [fix_camera_pos[0] - head * head_interval, fix_camera_pos[1]]
move_time = max(axis_moving_time(cur_pos[0] - next_pos[0], 0),
axis_moving_time(cur_pos[1] - next_pos[1], 1))
total_round_time += move_time
total_distance += max(abs(cur_pos[0] - next_pos[0]), abs(cur_pos[1] - next_pos[1]))
total_operation_time += t_fix_camera_check
cur_pos = next_pos
# 贴装路径
for head in head_sequence[cycle]:
index = placement_result[cycle][head]
if index == -1:
continue
mount_pos.append([pcb_data.iloc[index]['x'] - head * head_interval + stopper_pos[0],
pcb_data.iloc[index]['y'] + stopper_pos[1]])
mount_angle.append(pcb_data.iloc[index]['r'])
# 单独计算贴装路径
for cntPoints in range(len(mount_pos) - 1):
total_mount_distance += max(abs(mount_pos[cntPoints][0] - mount_pos[cntPoints + 1][0]),
abs(mount_pos[cntPoints][1] - mount_pos[cntPoints + 1][1]))
# 考虑R轴预旋转补偿同轴角度转动带来的额外贴装用时
total_operation_time += head_rotary_time(mount_angle[0]) # 补偿角度转动带来的额外贴装用时
total_operation_time += t_nozzle_put * nozzle_put_counter + t_nozzle_pick * nozzle_pick_counter
for idx, pos in enumerate(mount_pos):
total_operation_time += t_place
move_time = max(axis_moving_time(cur_pos[0] - pos[0], 0), axis_moving_time(cur_pos[1] - pos[1], 1))
if idx == 0:
total_round_time += move_time
else:
total_place_time += move_time
total_distance += max(abs(cur_pos[0] - pos[0]), abs(cur_pos[1] - pos[1]))
cur_pos = pos
total_nozzle_change_counter += nozzle_put_counter + nozzle_pick_counter
total_time = total_pickup_time + total_round_time + total_place_time + total_operation_time
minutes, seconds = int(total_time // 60), int(total_time) % 60
millisecond = int((total_time - minutes * 60 - seconds) * 60)
if hinter:
optimization_assign_result(component_data, pcb_data, component_result, cycle_result, feeder_slot_result,
nozzle_hinter=False, component_hinter=False, feeder_hinter=False)
print('-Cycle counter: {}'.format(sum(cycle_result)))
print('-Nozzle change counter: {}'.format(total_nozzle_change_counter // 2))
print('-Pick operation counter: {}'.format(total_pick_counter))
print('-Expected mounting tour length: {} mm'.format(total_mount_distance))
print('-Expected picking tour length: {} mm'.format(total_pick_distance))
print('-Expected total tour length: {} mm'.format(total_distance))
print('-Expected total moving time: {} s with pick: {}, round: {}, place = {}'.format(
total_pickup_time + total_round_time + total_place_time, total_pickup_time, total_round_time,
total_place_time))
print('-Expected total operation time: {} s'.format(total_operation_time))
if minutes > 0:
print('-Mounting time estimation: {:d} min {} s {:2d} ms ({:.3f}s)'.format(minutes, seconds, millisecond,
total_time))
else:
print('-Mounting time estimation: {} s {:2d} ms ({:.3f}s)'.format(seconds, millisecond, total_time))
return total_time