增加超启发式线体优化算法

This commit is contained in:
2024-05-17 22:52:49 +08:00
parent 6fa1f53f69
commit 7c9a900b95
13 changed files with 1731 additions and 1109 deletions

View File

@ -104,7 +104,7 @@ def optimizer_celldivision(pcb_data, component_data, hinter=True):
point_num = len(pcb_data)
component_cell = pd.DataFrame({'index': np.arange(len(component_data)), 'points': np.zeros(len(component_data), dtype=int)})
for point_cnt in range(point_num):
part = pcb_data.loc[point_cnt, 'fdr'].split(' ', 1)[1]
part = pcb_data.loc[point_cnt, 'part']
index = np.where(component_data['part'].values == part)
component_cell.loc[index[0], 'points'] += 1
component_cell = component_cell[~component_cell['points'].isin([0])]

View File

@ -29,7 +29,7 @@ head_nozzle = ['' for _ in range(max_head_index)] # 头上已经分配吸嘴
slotf1_pos, slotr1_pos = [-31.267, 44.], [807., 810.545] # F1(前基座最左侧)、R1(后基座最右侧)位置
fix_camera_pos = [269.531, 694.823] # 固定相机位置
anc_marker_pos = [336.457, 626.230] # ANC基准点位置
stopper_pos = [635.150, 124.738] # 止档块位置
stopper_pos = [535.150, 124.738] # 止档块位置
# 算法权重参数
e_nz_change, e_gang_pick = 4, 0.6
@ -48,6 +48,7 @@ nozzle_limit = {'CN065': 6, 'CN040': 6, 'CN220': 6, 'CN400': 6, 'CN140': 6}
# 时间参数
t_cycle = 0.3
t_anc = 0.6
t_pick, t_place = .078, .051 # 贴装/拾取用时
t_nozzle_put, t_nozzle_pick = 0.9, 0.75 # 装卸吸嘴用时
t_nozzle_change = t_nozzle_put + t_nozzle_pick
@ -59,66 +60,22 @@ T_pp, T_tr, T_nc, T_pl = 2, 5, 25, 0
class OptInfo:
def __init__(self):
self.placement_time = 0
self.total_time = .0 # 总组装时间
self.total_points = .0 # 总贴装点数
self.cycle_counter = 0
self.nozzle_change_counter = 0
self.pickup_counter = 0
self.pickup_time = .0 # 拾取过程运动时间
self.round_time = .0 # 往返基座/基板运动时间
self.place_time = .0 # 贴装过程运动时间
self.operation_time = .0 # 拾取/贴装/换吸嘴等机械动作用时
self.pickup_movement = 0
self.placement_movement = 0
self.cycle_counter = 0 # 周期数
self.nozzle_change_counter = 0 # 吸嘴更换次数
self.anc_round_counter = 0 # 前往ANC次数
self.pickup_counter = 0 # 拾取次数
def optimization_assign_result(component_data, pcb_data, component_result, cycle_result, feeder_slot_result,
nozzle_hinter=False, component_hinter=False, feeder_hinter=False):
if nozzle_hinter:
columns = ['H{}'.format(i + 1) for i in range(max_head_index)] + ['cycle']
nozzle_assign = pd.DataFrame(columns=columns)
for cycle, components in enumerate(component_result):
nozzle_assign.loc[cycle, 'cycle'] = cycle_result[cycle]
for head in range(max_head_index):
index = component_result[cycle][head]
if index == -1:
nozzle_assign.loc[cycle, 'H{}'.format(head + 1)] = ''
else:
nozzle_assign.loc[cycle, 'H{}'.format(head + 1)] = component_data.loc[index].nz
print(nozzle_assign)
print('')
if component_hinter:
columns = ['H{}'.format(i + 1) for i in range(max_head_index)] + ['cycle']
component_assign = pd.DataFrame(columns=columns)
for cycle, components in enumerate(component_result):
component_assign.loc[cycle, 'cycle'] = cycle_result[cycle]
for head in range(max_head_index):
index = component_result[cycle][head]
if index == -1:
component_assign.loc[cycle, 'H{}'.format(head + 1)] = ''
else:
component_assign.loc[cycle, 'H{}'.format(head + 1)] = component_data.loc[index].part
print(component_assign)
print('')
if feeder_hinter:
columns = ['H{}'.format(i + 1) for i in range(max_head_index)] + ['cycle']
feedr_assign = pd.DataFrame(columns=columns)
for cycle, components in enumerate(feeder_slot_result):
feedr_assign.loc[cycle, 'cycle'] = cycle_result[cycle]
for head in range(max_head_index):
slot = feeder_slot_result[cycle][head]
if slot == -1:
feedr_assign.loc[cycle, 'H{}'.format(head + 1)] = 'A'
else:
feedr_assign.loc[cycle, 'H{}'.format(head + 1)] = 'F{}'.format(
slot) if slot <= max_slot_index // 2 else 'R{}'.format(slot - max_head_index)
print(feedr_assign)
print('')
self.total_distance = .0 # 总移动路径
self.place_distance = .0 # 贴装移动路径
self.pickup_distance = .0 # 拾取移动路径
def axis_moving_time(distance, axis=0):
@ -172,8 +129,12 @@ def timer_wrapper(func):
def measure_time(*args, **kwargs):
start_time = time.time()
result = func(*args, **kwargs)
print(f"function {func.__name__} running time : {time.time() - start_time:.3f} s")
hinter = True
for key, val in kwargs.items():
if key == 'hinter':
hinter = val
if hinter:
print(f"function {func.__name__} running time : {time.time() - start_time:.3f} s")
return result
return measure_time
@ -440,7 +401,7 @@ def dynamic_programming_cycle_path(pcb_data, cycle_placement, assigned_feeder):
@timer_wrapper
def greedy_placement_route_generation(component_data, pcb_data, component_result, cycle_result, feeder_slot_result):
def greedy_placement_route_generation(component_data, pcb_data, component_result, cycle_result, feeder_slot_result, hinter=True):
placement_result, head_sequence_result = [], []
mount_point_index = [[] for _ in range(len(component_data))]
mount_point_pos = [[] for _ in range(len(component_data))]
@ -951,7 +912,7 @@ def constraint_swap_mutation(component_points, individual, machine_number):
offspring = individual.copy()
idx, component_index = 0, random.randint(0, len(component_points) - 1)
for _, points in component_points:
for points in component_points.values():
if component_index == 0:
while True:
index1, index2 = random.sample(range(points + machine_number - 2), 2)
@ -988,6 +949,7 @@ def random_selective(data, possibility): # 依概率选择随机数
possibility = [p / sum_val for p in possibility]
random_val = random.random()
idx = 0
for idx, val in enumerate(possibility):
random_val -= val
if random_val <= 0:
@ -1061,17 +1023,25 @@ def get_line_config_number(machine_number, component_number):
return div_counter
def partial_data_convert(pcb_data, component_data, machine_assign, machine_number):
assignment_result = copy.deepcopy(machine_assign)
def convert_line_assigment(pcb_data, component_data, assignment_result):
machine_number = len(assignment_result)
placement_points = []
partial_pcb_data, partial_component_data = defaultdict(pd.DataFrame), defaultdict(pd.DataFrame)
for machine_index in range(machine_number):
partial_pcb_data[machine_index] = pd.DataFrame(columns=pcb_data.columns)
partial_component_data[machine_index] = component_data.copy(deep=True)
placement_points.append(sum(assignment_result[machine_index]))
assert sum(placement_points) == len(pcb_data)
# === averagely assign available feeder ===
for part_index, data in component_data.iterrows():
feeder_limit = data['feeder-limit']
feeder_points = [assignment_result[machine_index][part_index] for machine_index in range(max_machine_index)]
feeder_points = [assignment_result[machine_index][part_index] for machine_index in range(machine_number)]
for machine_index in range(machine_number):
partial_component_data[machine_index].loc[part_index, 'points'] = 0
for machine_index in range(machine_number):
if feeder_points[machine_index] == 0:
@ -1079,7 +1049,7 @@ def partial_data_convert(pcb_data, component_data, machine_assign, machine_numbe
arg_feeder = max(math.floor(feeder_points[machine_index] / sum(feeder_points) * data['feeder-limit']), 1)
partial_component_data[machine_index].loc[part_index]['feeder-limit'] = arg_feeder
partial_component_data[machine_index].loc[part_index, 'feeder-limit'] = arg_feeder
feeder_limit -= arg_feeder
for machine_index in range(machine_number):
@ -1088,27 +1058,126 @@ def partial_data_convert(pcb_data, component_data, machine_assign, machine_numbe
if feeder_points[machine_index] == 0:
continue
partial_component_data[machine_index].loc[part_index]['feeder-limit'] += 1
partial_component_data[machine_index].loc[part_index, 'feeder-limit'] += 1
feeder_limit -= 1
for machine_index in range(machine_number):
if feeder_points[machine_index] > 0:
assert partial_component_data[machine_index].loc[part_index]['feeder-limit'] > 0
assert partial_component_data[machine_index].loc[part_index, 'feeder-limit'] > 0
# === assign placements ===
component_machine_index = [0 for _ in range(len(component_data))]
part2idx = defaultdict(int)
for idx, data in component_data.iterrows():
part2idx[data.part] = idx
machine_average_pos = [[0, 0] for _ in range(machine_number)]
machine_step_counter = [0 for _ in range(machine_number)]
part_pcb_data = defaultdict(list)
for _, data in pcb_data.iterrows():
part_index = component_data[component_data['part'] == data['part']].index.tolist()[0]
while True:
machine_index = component_machine_index[part_index]
if assignment_result[machine_index][part_index] == 0:
component_machine_index[part_index] += 1
machine_index += 1
else:
break
assignment_result[machine_index][part_index] -= 1
partial_pcb_data[machine_index] = pd.concat([partial_pcb_data[machine_index], pd.DataFrame(data).T])
part_pcb_data[part2idx[data.part]].append(data)
multiple_component_index = []
for part_index in range(len(component_data)):
machine_assign_set = []
for machine_index in range(machine_number):
if assignment_result[machine_index][part_index]:
machine_assign_set.append(machine_index)
if len(machine_assign_set) == 1:
for data in part_pcb_data[part_index]:
machine_index = machine_assign_set[0]
machine_average_pos[machine_index][0] += data.x
machine_average_pos[machine_index][1] += data.y
machine_step_counter[machine_index] += 1
partial_component_data[machine_index].loc[part_index, 'points'] += 1
partial_pcb_data[machine_index] = pd.concat([partial_pcb_data[machine_index], pd.DataFrame(data).T])
elif len(machine_assign_set) > 1:
multiple_component_index.append(part_index)
for machine_index in range(machine_number):
if machine_step_counter[machine_index] == 0:
continue
machine_average_pos[machine_index][0] /= machine_step_counter[machine_index]
machine_average_pos[machine_index][1] /= machine_step_counter[machine_index]
for part_index in multiple_component_index:
for data in part_pcb_data[part_index]:
idx = -1
min_dist = None
for machine_index in range(machine_number):
if partial_component_data[machine_index].loc[part_index, 'points'] >= \
assignment_result[machine_index][part_index]:
continue
dist = (data.x - machine_average_pos[machine_index][0]) ** 2 + (
data.y - machine_average_pos[machine_index][1]) ** 2
if min_dist is None or dist < min_dist:
min_dist, idx = dist, machine_index
assert idx >= 0
machine_step_counter[idx] += 1
machine_average_pos[idx][0] += (1 - 1 / machine_step_counter[idx]) * machine_average_pos[idx][0] + data.x / \
machine_step_counter[idx]
machine_average_pos[idx][1] += (1 - 1 / machine_step_counter[idx]) * machine_average_pos[idx][1] + data.y / \
machine_step_counter[idx]
partial_component_data[idx].loc[part_index, 'points'] += 1
partial_pcb_data[idx] = pd.concat([partial_pcb_data[idx], pd.DataFrame(data).T])
# === adjust the number of available feeders for single optimization separately ===
# for machine_index, data in partial_pcb_data.items():
# part_info = [] # part info list(part index, part points, available feeder-num, upper feeder-num)
# for part_index, cp_data in partial_component_data[machine_index].iterrows():
# if assignment_result[machine_index][part_index]:
# part_info.append(
# [part_index, assignment_result[machine_index][part_index], 1, cp_data['feeder-limit']])
#
# part_info = sorted(part_info, key=lambda x: x[1], reverse=True)
# start_index, end_index = 0, min(max_head_index - 1, len(part_info) - 1)
# while start_index < len(part_info):
# assign_part_point, assign_part_index = [], []
# for idx_ in range(start_index, end_index + 1):
# for _ in range(part_info[idx_][2]):
# assign_part_point.append(part_info[idx_][1] / part_info[idx_][2])
# assign_part_index.append(idx_)
#
# variance = np.std(assign_part_point)
# while start_index <= end_index:
# part_info_index = assign_part_index[np.argmax(assign_part_point)]
#
# if part_info[part_info_index][2] < part_info[part_info_index][3]: # 供料器数目上限的限制
# part_info[part_info_index][2] += 1
# end_index -= 1
#
# new_assign_part_point, new_assign_part_index = [], []
# for idx_ in range(start_index, end_index + 1):
# for _ in range(part_info[idx_][2]):
# new_assign_part_point.append(part_info[idx_][1] / part_info[idx_][2])
# new_assign_part_index.append(idx_)
#
# new_variance = np.std(new_assign_part_point)
# if variance < new_variance:
# part_info[part_info_index][2] -= 1
# end_index += 1
# break
#
# variance = new_variance
# assign_part_index, assign_part_point = new_assign_part_index.copy(), new_assign_part_point.copy()
# else:
# break
#
# start_index = end_index + 1
# end_index = min(start_index + max_head_index - 1, len(part_info) - 1)
#
# max_avl_feeder = max(part_info, key=lambda x: x[2])[2]
# for info in part_info:
# partial_component_data[machine_index].loc[info[0], 'feeder-limit'] = math.ceil(info[2] / max_avl_feeder)
for machine_index in range(machine_number):
partial_component_data[machine_index] = partial_component_data[machine_index][
partial_component_data[machine_index]['points'] != 0].reset_index(drop=True)
return partial_pcb_data, partial_component_data

View File

@ -1,25 +1,121 @@
import math
from base_optimizer.optimizer_common import *
from base_optimizer.result_analysis import placement_info_evaluation
@timer_wrapper
def feeder_allocate(component_data, pcb_data, feeder_data, figure=False):
def feeder_priority_assignment(component_data, pcb_data, hinter=True):
feeder_allocate_val = None
component_result, cycle_result, feeder_slot_result = None, None, None
nozzle_pattern_list = feeder_nozzle_pattern(component_data)
pbar = tqdm(total=len(nozzle_pattern_list), desc='feeder priority process') if hinter else None
# 第1步确定吸嘴分配模式
for nozzle_pattern in nozzle_pattern_list:
feeder_data = pd.DataFrame(columns=['slot', 'part', 'arg'])
# 第2步分配供料器位置
feeder_allocate(component_data, pcb_data, feeder_data, nozzle_pattern, figure=False)
# 第3步扫描供料器基座确定元件拾取的先后顺序
component_assign, cycle_assign, feeder_slot_assign = feeder_base_scan(component_data, pcb_data, feeder_data)
info = placement_info_evaluation(component_data, pcb_data, component_assign, cycle_assign,
feeder_slot_assign, None, None, hinter=False)
val = 0.4 * info.cycle_counter + 2.15 * info.nozzle_change_counter + 0.11 * info.pickup_counter \
+ 0.005 * info.anc_round_counter
if feeder_allocate_val is None or val < feeder_allocate_val:
feeder_allocate_val = val
component_result, cycle_result, feeder_slot_result = component_assign, cycle_assign, feeder_slot_assign
if pbar:
pbar.update(1)
return component_result, cycle_result, feeder_slot_result
def feeder_nozzle_pattern(component_data):
nozzle_pattern_list = []
nozzle_points = defaultdict(int)
for _, data in component_data.iterrows():
if data.points == 0:
continue
nozzle_points[data.nz] += data.points
head_assign_indexes = [int(math.ceil(max_head_index + 0.5) - 4.5 - pow(-1, h) * (math.ceil(h / 2) - 0.5)) for h in
range(1, max_head_index + 1)]
while len(nozzle_points):
nozzle_heads, nozzle_indices = defaultdict(int), defaultdict(str),
min_points_nozzle = None
for idx, (nozzle, points) in enumerate(nozzle_points.items()):
nozzle_heads[nozzle], nozzle_indices[idx] = 1, nozzle
if min_points_nozzle is None or points < nozzle_points[min_points_nozzle]:
min_points_nozzle = nozzle
while sum(nozzle_heads.values()) != max_head_index:
max_cycle_nozzle = None
for nozzle, head_num in nozzle_heads.items():
if max_cycle_nozzle is None or nozzle_points[nozzle] / head_num > nozzle_points[max_cycle_nozzle] / \
nozzle_heads[max_cycle_nozzle]:
max_cycle_nozzle = nozzle
elif nozzle_points[nozzle] / head_num == nozzle_points[max_cycle_nozzle] / nozzle_heads[max_cycle_nozzle]:
if head_num > nozzle_heads[max_cycle_nozzle]:
max_cycle_nozzle = nozzle
assert max_cycle_nozzle is not None
nozzle_heads[max_cycle_nozzle] += 1
for permu in itertools.permutations(nozzle_indices.keys()):
nozzle_pattern_list.append([])
for idx in permu:
for _ in range(nozzle_heads[nozzle_indices[idx]]):
nozzle_pattern_list[-1].append(nozzle_indices[idx])
if len(nozzle_points.keys()) > 1:
nozzle_average_points = []
for nozzle, head in nozzle_heads.items():
nozzle_average_points.append([nozzle, head, nozzle_points[nozzle] / head])
nozzle_average_points = sorted(nozzle_average_points, key=lambda x: -x[2])
idx = 0
nozzle_pattern_list.append(['' for _ in range(max_head_index)])
for nozzle, head, _ in nozzle_average_points:
for _ in range(head):
nozzle_pattern_list[-1][head_assign_indexes[idx]] = nozzle
idx += 1
idx = 1
nozzle_pattern_list.append(['' for _ in range(max_head_index)])
for nozzle, head, _ in nozzle_average_points:
for _ in range(head):
nozzle_pattern_list[-1][head_assign_indexes[-idx]] = nozzle
idx += 1
nozzle_points.pop(min_points_nozzle)
return nozzle_pattern_list
def feeder_allocate(component_data, pcb_data, feeder_data, nozzle_pattern, figure=False, hinter=True):
feeder_points, feeder_division_points = defaultdict(int), defaultdict(int) # 供料器贴装点数
mount_center_pos = defaultdict(int)
mount_center_pos = defaultdict(float)
feeder_limit, feeder_arrange = defaultdict(int), defaultdict(int)
part_nozzle = defaultdict(str)
feeder_base = [-2] * max_slot_index # 已安装在供料器基座上的元件(-2: 未分配,-1: 占用状态)
feeder_base_points = [0] * max_slot_index # 供料器基座结余贴装点数量
component_index = defaultdict(int)
for idx, data in component_data.iterrows():
component_index[data.part] = idx
feeder_limit[idx] = data['feeder-limit']
feeder_arrange[idx] = 0
for _, data in pcb_data.iterrows():
pos, part = data.x + stopper_pos[0], data.part
part_index = component_data[component_data.part == part].index.tolist()[0]
if part not in component_data:
feeder_limit[part_index] = component_data.loc[part_index]['feeder-limit']
feeder_arrange[part_index] = 0
part_index = component_index[part]
feeder_points[part_index] += 1
mount_center_pos[part_index] += ((pos - mount_center_pos[part_index]) / feeder_points[part_index])
@ -37,7 +133,7 @@ def feeder_allocate(component_data, pcb_data, feeder_data, figure=False):
if feeder_data is not None:
for _, feeder in feeder_data.iterrows():
slot, part = feeder.slot, feeder.part
part_index = component_data[component_data.part == part].index.tolist()[0]
part_index = component_index[part]
# 供料器基座分配位置和对应贴装点数
feeder_base[slot], feeder_base_points[slot] = part_index, feeder_division_points[part_index]
@ -63,78 +159,14 @@ def feeder_allocate(component_data, pcb_data, feeder_data, figure=False):
nozzle_component_points[nozzle].pop(index_)
break
nozzle_assigned_counter = optimal_nozzle_assignment(component_data, pcb_data)
head_assign_indexes = list(range(max_head_index))
nozzle_pattern, optimal_nozzle_pattern, optimal_nozzle_points = [], None, 0
# 先排序
nozzle_pattern_list = []
for nozzle, counter in nozzle_assigned_counter.items():
nozzle_pattern_list.append([nozzle, sum(nozzle_component_points[nozzle]) // counter])
nozzle_pattern_list.sort(key=lambda x: x[1], reverse=True)
# 后确定吸嘴分配模式
upper_head, extra_head = defaultdict(int), defaultdict(int)
head_index = []
for nozzle, head in nozzle_assigned_counter.items():
# 每个吸嘴能达成同时拾取数目的上限
upper_head[nozzle] = min(len(nozzle_component[nozzle]), head)
extra_head[nozzle] = head - upper_head[nozzle]
head_counter = (sum(upper_head.values()) - 1) // 2
while head_counter >= 0:
if head_counter != (sum(upper_head.values()) - 1) - head_counter:
head_index.append((sum(upper_head.values()) - 1) - head_counter)
head_index.append(head_counter)
head_counter -= 1
nozzle_pattern = [None for _ in range(sum(upper_head.values()))]
for nozzle in upper_head.keys():
counter = upper_head[nozzle]
while counter:
nozzle_pattern[head_index[0]] = nozzle
counter -= 1
head_index.pop(0)
head = 0
while head + sum(extra_head.values()) <= len(nozzle_pattern):
extra_head_cpy = copy.deepcopy(extra_head)
increment = 0
while increment < sum(extra_head.values()):
extra_head_cpy[nozzle_pattern[head + increment]] -= 1
increment += 1
check_extra_head = True
for head_ in extra_head_cpy.values():
if head_ != 0:
check_extra_head = False # 任一项不为0 说明不构成
break
if check_extra_head:
increment = 0
while increment < sum(extra_head.values()):
nozzle_pattern.append(nozzle_pattern[head + increment])
increment += 1
for nozzle in extra_head.keys():
extra_head[nozzle] = 0
break
head += 1
for nozzle, head_ in extra_head.items():
while head_:
nozzle_pattern.append(nozzle)
head_ -= 1
head_assign_indexes = [int(math.ceil(max_head_index + 0.5) - 4.5 - pow(-1, h) * (math.ceil(h / 2) - 0.5)) for h in
range(1, max_head_index + 1)]
assert len(nozzle_pattern) == max_head_index
while True:
best_assign, best_assign_points = [], []
best_assign_slot, best_assign_value = -1, -np.Inf
best_nozzle_component, best_nozzle_component_points = None, None
for slot in range(1, max_slot_index // 2 - (max_head_index - 1) * interval_ratio + 1):
nozzle_assigned_counter_cpy = copy.deepcopy(nozzle_assigned_counter)
feeder_assign, feeder_assign_points = [], []
tmp_feeder_limit, tmp_feeder_points = feeder_limit.copy(), feeder_points.copy()
tmp_nozzle_component, tmp_nozzle_component_points = copy.deepcopy(nozzle_component), copy.deepcopy(
@ -144,24 +176,14 @@ def feeder_allocate(component_data, pcb_data, feeder_data, figure=False):
for head in range(max_head_index):
feeder_assign.append(feeder_base[slot + head * interval_ratio])
if scan_part := feeder_assign[-1] >= 0:
nozzle = part_nozzle[scan_part]
if feeder_assign[-1] >= 0:
feeder_assign_points.append(feeder_base_points[slot + head * interval_ratio])
if feeder_assign_points[-1] <= 0:
feeder_assign[-1], feeder_assign_points[-1] = -1, 0
elif nozzle in nozzle_assigned_counter_cpy.keys():
nozzle_assigned_counter_cpy[nozzle] -= 1
if nozzle_assigned_counter_cpy[nozzle] == 0:
nozzle_assigned_counter_cpy.pop(nozzle)
else:
feeder_assign_points.append(0)
if -2 not in feeder_assign: # 无可用槽位
if sum(feeder_assign_points) > optimal_nozzle_points:
optimal_nozzle_points = sum(feeder_assign_points)
optimal_nozzle_pattern = [''] * max_head_index
for head in range(max_head_index):
optimal_nozzle_pattern[head] = part_nozzle[feeder_assign[head]]
if -2 not in feeder_assign:
continue
assign_part_stack, assign_part_stack_points = [], []
@ -172,7 +194,7 @@ def feeder_allocate(component_data, pcb_data, feeder_data, figure=False):
if len(nozzle_pattern) == 0: # 吸嘴匹配模式为空,优先分配元件,根据分配元件倒推吸嘴匹配模式
nozzle_assign = ''
max_points, max_nozzle_points = 0, 0
for nozzle in nozzle_assigned_counter_cpy.keys():
for nozzle in set(nozzle_pattern):
if len(tmp_nozzle_component[nozzle]) == 0:
continue
part = max(tmp_nozzle_component[nozzle],
@ -229,12 +251,6 @@ def feeder_allocate(component_data, pcb_data, feeder_data, figure=False):
else:
part = -1 # 存在位置冲突的元件,不占用可用供料器数
# 更新吸嘴匹配模式的吸嘴数
if nozzle_assign in nozzle_assigned_counter_cpy.keys():
nozzle_assigned_counter_cpy[nozzle_assign] -= 1
if nozzle_assigned_counter_cpy[nozzle_assign] == 0:
nozzle_assigned_counter_cpy.pop(nozzle_assign)
if part >= 0 and tmp_feeder_limit[part] == 0:
continue
@ -253,7 +269,6 @@ def feeder_allocate(component_data, pcb_data, feeder_data, figure=False):
if feeder != -2:
continue
for idx, part in enumerate(assign_part_stack):
feeder_type = component_data.loc[part].fdr
extra_width, extra_slot = feeder_width[feeder_type][0] + feeder_width[feeder_type][
1] - slot_interval, 1
@ -282,7 +297,8 @@ def feeder_allocate(component_data, pcb_data, feeder_data, figure=False):
part, points = assign_part_stack[0], assign_part_stack_points[0]
feeder_type = component_data.loc[part].fdr
extra_width, extra_slot = feeder_width[feeder_type][0] + feeder_width[feeder_type][1] - slot_interval, 1
extra_width = feeder_width[feeder_type][0] + feeder_width[feeder_type][1] - slot_interval
extra_slot = 1
slot_overlap = False
while extra_width > 0:
@ -295,8 +311,8 @@ def feeder_allocate(component_data, pcb_data, feeder_data, figure=False):
if not slot_overlap:
feeder_assign[head], feeder_assign_points[head] = part, points
extra_width, extra_head = feeder_width[feeder_type][0] + feeder_width[feeder_type][
1] - head_interval, 1
extra_width = feeder_width[feeder_type][0] + feeder_width[feeder_type][1] - head_interval
extra_head = 1
while extra_width > 0 and head + extra_head < max_head_index:
feeder_assign[head + extra_head] = -1
extra_head += 1
@ -325,8 +341,8 @@ def feeder_allocate(component_data, pcb_data, feeder_data, figure=False):
for head, feeder_ in enumerate(feeder_assign):
if feeder_ < 0:
continue
average_slot.append(
(mount_center_pos[feeder_] - slotf1_pos[0]) / slot_interval + 1 - head * interval_ratio)
average_slot.append((mount_center_pos[feeder_] - slotf1_pos[0]) / slot_interval + 1)
if nozzle_pattern and component_data.loc[feeder_].nz != nozzle_pattern[head]:
nozzle_change_counter += 1
@ -346,7 +362,7 @@ def feeder_allocate(component_data, pcb_data, feeder_data, figure=False):
continue
feeder_assign_points_cpy[head] -= min(points_filter)
assign_value -= 1e2 * e_nz_change * nozzle_change_counter + 1e-5 * abs(slot - average_slot)
assign_value -= (1e2 * e_nz_change * nozzle_change_counter + 1e-5 * abs(slot - average_slot))
if assign_value >= best_assign_value and sum(feeder_assign_points) != 0:
@ -359,8 +375,6 @@ def feeder_allocate(component_data, pcb_data, feeder_data, figure=False):
if not best_assign_points:
break
if len(nozzle_pattern) == 0:
nozzle_pattern = [''] * max_head_index
for idx, part in enumerate(best_assign):
if part < 0:
continue
@ -410,34 +424,8 @@ def feeder_allocate(component_data, pcb_data, feeder_data, figure=False):
nozzle_component, nozzle_component_points = copy.deepcopy(best_nozzle_component), copy.deepcopy(
best_nozzle_component_points)
if sum(best_assign_points) > optimal_nozzle_points:
optimal_nozzle_points = sum(best_assign_points)
optimal_nozzle_pattern = nozzle_pattern.copy()
assert not list(filter(lambda x: x < 0, feeder_limit.values())) # 分配供料器数目在限制范围内
# 若所有供料器均安装在基座上,重新对基座进行扫描,确定最优吸嘴模式(有序)
if not optimal_nozzle_points:
feeder_base, feeder_base_points = [-2] * max_slot_index, [0] * max_slot_index
for _, feeder in feeder_data.iterrows():
part_index = component_data[component_data.part == feeder.part].index.tolist()[0]
# 供料器基座分配位置和对应贴装点数
feeder_base[feeder.slot], feeder_base_points[feeder.slot] = part_index, feeder_division_points[part_index]
# 前基座 TODO: 后基座
for slot in range(max_slot_index // 2 - (max_head_index - 1) * interval_ratio):
sum_scan_points = 0
for head in range(max_head_index):
sum_scan_points += feeder_base_points[slot + head * interval_ratio]
if sum_scan_points > optimal_nozzle_points:
optimal_nozzle_pattern = ['' for _ in range(max_head_index)]
for head in range(max_head_index):
if part := feeder_base[slot + head * interval_ratio] == -2:
continue
optimal_nozzle_pattern[head] = part_nozzle[part]
# 更新供料器占位信息
for _, data in feeder_data.iterrows():
feeder_base[data.slot] = -1
@ -453,7 +441,7 @@ def feeder_allocate(component_data, pcb_data, feeder_data, figure=False):
# 绘制供料器位置布局
for slot in range(max_slot_index // 2):
plt.scatter(slotf1_pos[0] + slot_interval * slot, slotf1_pos[1], marker='x', s=12, color='black', alpha=0.5)
plt.text(slotf1_pos[0] + slot_interval * slot, slotf1_pos[1] - 45, slot + 1, ha='center', va='bottom',
plt.text(slotf1_pos[0] + slot_interval * slot, slotf1_pos[1] - 45, str(slot + 1), ha='center', va='bottom',
size=8)
feeder_assign_range = []
@ -497,26 +485,31 @@ def feeder_allocate(component_data, pcb_data, feeder_data, figure=False):
plt.ylim(-10, 100)
plt.show()
return optimal_nozzle_pattern
@timer_wrapper
def feeder_base_scan(component_data, pcb_data, feeder_data, nozzle_pattern):
def feeder_base_scan(component_data, pcb_data, feeder_data):
feeder_assign_check = set()
for _, feeder in feeder_data.iterrows():
feeder_assign_check.add(feeder.part)
component_points = [0] * len(component_data)
for i, data in pcb_data.iterrows():
part_index = component_data[component_data.part == data.part].index.tolist()[0]
component_points[part_index] += 1
nozzle_type = component_data.loc[part_index].nz
if nozzle_type not in nozzle_limit.keys() or nozzle_limit[nozzle_type] <= 0:
info = 'there is no available nozzle [' + nozzle_type + '] for the assembly process'
component_index = defaultdict(int)
for idx, data in component_data.iterrows():
if data.nz not in nozzle_limit.keys() or nozzle_limit[data.nz] <= 0:
info = 'there is no available nozzle [' + data.nz + '] for the assembly process'
raise ValueError(info)
component_points[idx] = data.points
component_index[data.part] = idx
assert len(feeder_assign_check) == len(component_points) - component_points.count(0) # 所有供料器均已分配槽位
mount_center_slot = defaultdict(float)
for _, data in pcb_data.iterrows():
part_index = component_index[data.part]
mount_center_slot[part_index] += (data.x - mount_center_slot[part_index])
for idx, pos in mount_center_slot.items():
mount_center_slot[idx] = (pos / component_points[idx] + stopper_pos[0] - slotf1_pos[0]) / slot_interval + 1
feeder_part = [-1] * max_slot_index
for _, data in feeder_data.iterrows():
component_index = component_data[component_data.part == data.part].index.tolist()
@ -528,233 +521,263 @@ def feeder_base_scan(component_data, pcb_data, feeder_data, nozzle_pattern):
component_result, cycle_result, feeder_slot_result = [], [], [] # 贴装点索引和拾取槽位优化结果
nozzle_mode = [nozzle_pattern] # 吸嘴匹配模式
with tqdm(total=len(pcb_data)) as pbar:
pbar.set_description('feeder scan process')
pbar_prev = 0
value_increment_base = 0
while True:
# === 周期内循环 ===
assigned_part = [-1 for _ in range(max_head_index)] # 当前扫描到的头分配元件信息
assigned_cycle = [0 for _ in range(max_head_index)] # 当前扫描到的元件最大分配次数
assigned_slot = [-1 for _ in range(max_head_index)] # 当前扫描到的供料器分配信息
sum_nozzle_points, nozzle_pattern = -1, None
for slot in range(max_slot_index // 2 - (max_head_index - 1) * interval_ratio):
cur_nozzle_points, cur_nozzle_pattern = 0, ['' for _ in range(max_head_index)]
for head in range(max_head_index):
if (part := feeder_part[slot + head * interval_ratio]) == -1:
continue
cur_nozzle_pattern[head] = component_data.loc[part].nz
cur_nozzle_points += component_points[part]
if cur_nozzle_points > sum_nozzle_points:
sum_nozzle_points = cur_nozzle_points
nozzle_pattern = cur_nozzle_pattern
best_assigned_eval_func = -float('inf')
nozzle_insert_cycle = 0
for cycle_index, nozzle_cycle in enumerate(nozzle_mode):
scan_eval_func_list = [] # 若干次扫描得到的最优解
# nozzle_cycle 吸嘴模式下,已扫描到的最优结果
cur_scan_part = [-1 for _ in range(max_head_index)]
cur_scan_cycle = [0 for _ in range(max_head_index)]
cur_scan_slot = [-1 for _ in range(max_head_index)]
cur_nozzle_limit = copy.deepcopy(nozzle_limit)
nozzle_mode, nozzle_mode_cycle = [nozzle_pattern], [0] # 吸嘴匹配模式
while True:
best_scan_part, best_scan_cycle = [-1 for _ in range(max_head_index)], [-1 for _ in
range(max_head_index)]
best_scan_slot = [-1 for _ in range(max_head_index)]
best_scan_nozzle_limit = copy.deepcopy(cur_nozzle_limit)
value_increment_base = 0
while True:
# === 周期内循环 ===
assigned_part = [-1 for _ in range(max_head_index)] # 当前扫描到的头分配元件信息
assigned_cycle = [0 for _ in range(max_head_index)] # 当前扫描到的元件最大分配次数
assigned_slot = [-1 for _ in range(max_head_index)] # 当前扫描到的供料器分配信息
scan_eval_func, search_break = -float('inf'), True
best_assigned_eval_func = -float('inf')
nozzle_insert_cycle = 0
for cycle_index, nozzle_cycle in enumerate(nozzle_mode):
scan_eval_func_list = [] # 若干次扫描得到的最优解
# nozzle_cycle 吸嘴模式下,已扫描到的最优结果
cur_scan_part = [-1 for _ in range(max_head_index)]
cur_scan_cycle = [0 for _ in range(max_head_index)]
cur_scan_slot = [-1 for _ in range(max_head_index)]
cur_nozzle_limit = copy.deepcopy(nozzle_limit)
# 前供料器基座扫描
for slot in range(1, max_slot_index // 2 - (max_head_index - 1) * interval_ratio + 1):
scan_cycle, scan_part, scan_slot = cur_scan_cycle.copy(), cur_scan_part.copy(), cur_scan_slot.copy()
scan_nozzle_limit = copy.deepcopy(cur_nozzle_limit)
while True:
best_scan_part = [-1 for _ in range(max_head_index)]
best_scan_cycle = [-1 for _ in range(max_head_index)]
best_scan_slot = [-1 for _ in range(max_head_index)]
# 预扫描确定各类型元件拾取数目(前瞻)
preview_scan_part = defaultdict(int)
for head in range(max_head_index):
part = feeder_part[slot + head * interval_ratio]
best_scan_nozzle_limit = copy.deepcopy(cur_nozzle_limit)
scan_eval_func, search_break = -float('inf'), True
# 贴装头和拾取槽位满足对应关系
if scan_part[head] == -1 and part != -1 and component_points[part] > 0 and scan_part.count(
part) < component_points[part]:
preview_scan_part[part] += 1
# 前供料器基座扫描
for slot in range(1, max_slot_index // 2 - (max_head_index - 1) * interval_ratio + 1):
if sum(feeder_part[slot: slot + max_head_index * interval_ratio: interval_ratio]) == -max_head_index:
continue
component_counter = 0
for head in range(max_head_index):
part = feeder_part[slot + head * interval_ratio]
# 1.匹配条件满足: 贴装头和拾取槽位满足对应关系
if scan_part[head] == -1 and part != -1 and component_points[part] > 0 and scan_part.count(
part) < component_points[part]:
# 2.匹配条件满足:不超过可用吸嘴数的限制
nozzle = component_data.loc[part].nz
if scan_nozzle_limit[nozzle] <= 0:
continue
scan_cycle, scan_part, scan_slot = cur_scan_cycle.copy(), cur_scan_part.copy(), cur_scan_slot.copy()
scan_nozzle_limit = copy.deepcopy(cur_nozzle_limit)
# 3.增量条件满足: 引入新的元件类型不会使代价函数的值减少(前瞻)
if scan_cycle.count(0) == max_head_index:
gang_pick_change = component_points[part]
else:
prev_cycle = min(filter(lambda x: x > 0, scan_cycle))
# 同时拾取数的提升
gang_pick_change = min(prev_cycle, component_points[part] // preview_scan_part[part])
# 预扫描确定各类型元件拾取数目(前瞻
preview_scan_part = defaultdict(int)
for head in range(max_head_index):
part = feeder_part[slot + head * interval_ratio]
# 4.拾取移动距离条件满足: 邻近元件进行同时抓取,降低移动路径长度
# reference_slot = -1
# for head_, slot_ in enumerate(scan_slot):
# if slot_ != -1:
# reference_slot = slot_ - head_ * interval_ratio
# if reference_slot != -1 and abs(reference_slot - slot) > (max_head_index - 1) * interval_ratio:
# continue
# 贴装头和拾取槽位满足对应关系
if scan_part[head] == -1 and part != -1 and component_points[part] > 0 and scan_part.count(
part) < component_points[part]:
preview_scan_part[part] += 1
# 5.同时拾取的增量 和 吸嘴更换次数比较
prev_nozzle_change = 0
if cycle_index + 1 < len(nozzle_mode):
prev_nozzle_change = 2 * (nozzle_cycle[head] != nozzle_mode[cycle_index + 1][head])
component_counter = 0
for head in range(max_head_index):
part = feeder_part[slot + head * interval_ratio]
# 1.匹配条件满足: 贴装头和拾取槽位满足对应关系
if scan_part[head] == -1 and part != -1 and component_points[part] > 0 and scan_part.count(
part) < component_points[part]:
# 2.匹配条件满足:不超过可用吸嘴数的限制
nozzle = component_data.loc[part].nz
if scan_nozzle_limit[nozzle] <= 0:
continue
# 避免首个周期吸杆占用率低的问题
if nozzle_cycle[head] == '':
nozzle_change = 0
else:
nozzle_change = 2 * (nozzle != nozzle_cycle[head])
# 3.增量条件满足: 引入新的元件类型不会使代价函数的值减少(前瞻)
if scan_cycle.count(0) == max_head_index:
gang_pick_change = component_points[part]
else:
prev_cycle = min(filter(lambda x: x > 0, scan_cycle))
# 同时拾取数的提升
gang_pick_change = min(prev_cycle, component_points[part] // preview_scan_part[part])
if cycle_index + 1 < len(nozzle_mode):
nozzle_change += 2 * (nozzle != nozzle_mode[cycle_index + 1][head])
nozzle_change -= prev_nozzle_change
# 4.拾取移动距离条件满足: 邻近元件进行同时抓取,降低移动路径长度
# reference_slot = -1
# for head_, slot_ in enumerate(scan_slot):
# if slot_ != -1:
# reference_slot = slot_ - head_ * interval_ratio
# if reference_slot != -1 and abs(reference_slot - slot) > (max_head_index - 1) * interval_ratio:
# continue
val = e_gang_pick * gang_pick_change - e_nz_change * nozzle_change
if val < value_increment_base:
continue
# 5.同时拾取的增量 和 吸嘴更换次数比较
prev_nozzle_change = 0
if cycle_index + 1 < len(nozzle_mode):
prev_nozzle_change = 2 * (nozzle_cycle[head] != nozzle_mode[cycle_index + 1][head])
component_counter += 1
# 避免首个周期吸杆占用率低的问题
if nozzle_cycle[head] == '':
nozzle_change = 0
else:
nozzle_change = 2 * (nozzle != nozzle_cycle[head])
scan_part[head] = part
scan_cycle[head] = component_points[part] // preview_scan_part[part]
scan_slot[head] = slot + head * interval_ratio
if cycle_index + 1 < len(nozzle_mode):
nozzle_change += 2 * (nozzle != nozzle_mode[cycle_index + 1][head])
nozzle_change -= prev_nozzle_change
scan_nozzle_limit[nozzle] -= 1
val = e_gang_pick * gang_pick_change - e_nz_change * nozzle_change
if val < value_increment_base:
continue
nozzle_counter = 0 # 吸嘴更换次数
# 上一周期
for head, nozzle in enumerate(nozzle_cycle):
component_counter += 1
scan_part[head] = part
scan_cycle[head] = component_points[part] // preview_scan_part[part]
scan_slot[head] = slot + head * interval_ratio
scan_nozzle_limit[nozzle] -= 1
nozzle_counter = 0 # 吸嘴更换次数
# 上一周期
for head, nozzle in enumerate(nozzle_cycle):
if scan_part[head] == -1:
continue
if component_data.loc[scan_part[head]].nz != nozzle and nozzle != '':
nozzle_counter += 2
# 下一周期(额外增加的吸嘴更换次数)
if cycle_index + 1 < len(nozzle_mode):
for head, nozzle in enumerate(nozzle_mode[cycle_index + 1]):
if scan_part[head] == -1:
continue
prev_counter, new_counter = 0, 0
if nozzle_cycle[head] != nozzle and nozzle_cycle[head] != '' and nozzle != '':
prev_counter += 2
if component_data.loc[scan_part[head]].nz != nozzle and nozzle != '':
nozzle_counter += 2
new_counter += 2
nozzle_counter += new_counter - prev_counter
else:
for head, nozzle in enumerate(nozzle_mode[0]):
if scan_part[head] == -1:
continue
prev_counter, new_counter = 0, 0
if nozzle_cycle[head] != nozzle and nozzle_cycle[head] != '' and nozzle != '':
prev_counter += 2
if component_data.loc[scan_part[head]].nz != nozzle and nozzle != '':
new_counter += 2
nozzle_counter += new_counter - prev_counter
# 下一周期(额外增加的吸嘴更换次数)
if cycle_index + 1 < len(nozzle_mode):
for head, nozzle in enumerate(nozzle_mode[cycle_index + 1]):
if scan_part[head] == -1:
continue
prev_counter, new_counter = 0, 0
if nozzle_cycle[head] != nozzle and nozzle_cycle[head] != '' and nozzle != '':
prev_counter += 2
if component_data.loc[scan_part[head]].nz != nozzle and nozzle != '':
new_counter += 2
nozzle_counter += new_counter - prev_counter
else:
for head, nozzle in enumerate(nozzle_mode[0]):
if scan_part[head] == -1:
continue
prev_counter, new_counter = 0, 0
if nozzle_cycle[head] != nozzle and nozzle_cycle[head] != '' and nozzle != '':
prev_counter += 2
if component_data.loc[scan_part[head]].nz != nozzle and nozzle != '':
new_counter += 2
nozzle_counter += new_counter - prev_counter
if component_counter == 0: # 当前情形下未扫描到任何元件
continue
search_break = False
if component_counter == 0: # 当前情形下未扫描到任何元件
scan_part_head = defaultdict(list)
for head, part in enumerate(scan_part):
if part == -1:
continue
scan_part_head[part].append(head)
search_break = False
for part, heads in scan_part_head.items():
part_cycle = component_points[part] // len(heads)
for head in heads:
scan_cycle[head] = part_cycle
scan_part_head = defaultdict(list)
for head, part in enumerate(scan_part):
if part == -1:
continue
scan_part_head[part].append(head)
# 计算扫描后的代价函数,记录扫描后的最优解
# 短期收益
cycle = min(filter(lambda x: x > 0, scan_cycle))
gang_pick_counter, gang_pick_slot_set = 0, set()
for head, pick_slot in enumerate(scan_slot):
gang_pick_slot_set.add(pick_slot - head * interval_ratio)
for part, heads in scan_part_head.items():
part_cycle = component_points[part] // len(heads)
for head in heads:
scan_cycle[head] = part_cycle
eval_func_short_term = e_gang_pick * (max_head_index - scan_slot.count(-1) - len(
gang_pick_slot_set)) * cycle - e_nz_change * nozzle_counter
# 计算扫描后的代价函数,记录扫描后的最优解
# 短期收益
cycle = min(filter(lambda x: x > 0, scan_cycle))
gang_pick_counter, gang_pick_slot_set = 0, set()
for head, pick_slot in enumerate(scan_slot):
gang_pick_slot_set.add(pick_slot - head * interval_ratio)
# 长期收益
gang_pick_slot_dict = defaultdict(list)
for head, pick_slot in enumerate(scan_slot):
if pick_slot == -1:
continue
gang_pick_slot_dict[pick_slot - head * interval_ratio].append(scan_cycle[head])
eval_func_short_term = e_gang_pick * (max_head_index - scan_slot.count(-1) - len(
gang_pick_slot_set)) * cycle - e_nz_change * nozzle_counter
eval_func_long_term = 0
for pick_cycle in gang_pick_slot_dict.values():
while pick_cycle:
min_cycle = min(pick_cycle)
eval_func_long_term += e_gang_pick * (len(pick_cycle) - 1) * min(pick_cycle)
pick_cycle = list(map(lambda c: c - min_cycle, pick_cycle))
pick_cycle = list(filter(lambda c: c > 0, pick_cycle))
eval_func_long_term -= e_nz_change * nozzle_counter
# 长期收益
gang_pick_slot_dict = defaultdict(list)
for head, pick_slot in enumerate(scan_slot):
if pick_slot == -1:
continue
gang_pick_slot_dict[pick_slot - head * interval_ratio].append(scan_cycle[head])
# 拾取过程中的移动路径
pick_slot_set = set()
for head, pick_slot in enumerate(scan_slot):
if pick_slot == -1:
continue
pick_slot_set.add(pick_slot - head * interval_ratio)
eval_func_long_term = 0
for pick_cycle in gang_pick_slot_dict.values():
while pick_cycle:
min_cycle = min(pick_cycle)
eval_func_long_term += e_gang_pick * (len(pick_cycle) - 1) * min(pick_cycle)
pick_cycle = list(map(lambda c: c - min_cycle, pick_cycle))
pick_cycle = list(filter(lambda c: c > 0, pick_cycle))
eval_func_long_term -= e_nz_change * nozzle_counter
slot_offset = 0
for head, part in enumerate(scan_part):
if part == -1:
continue
slot_offset += abs(scan_slot[head] - mount_center_slot[part])
ratio = 0.5
eval_func = (1 - ratio) * eval_func_short_term + ratio * eval_func_long_term
if eval_func >= scan_eval_func:
scan_eval_func = eval_func
best_scan_part, best_scan_cycle = scan_part.copy(), scan_cycle.copy()
best_scan_slot = scan_slot.copy()
ratio = 0.5
eval_func = (1 - ratio) * eval_func_short_term + ratio * eval_func_long_term - 1e-5 * (
max(pick_slot_set) - min(pick_slot_set)) - 1e-5 * slot_offset
if eval_func >= scan_eval_func:
scan_eval_func = eval_func
best_scan_part, best_scan_cycle = scan_part.copy(), scan_cycle.copy()
best_scan_slot = scan_slot.copy()
best_scan_nozzle_limit = copy.deepcopy(scan_nozzle_limit)
best_scan_nozzle_limit = copy.deepcopy(scan_nozzle_limit)
if search_break:
break
if search_break:
break
scan_eval_func_list.append(scan_eval_func)
scan_eval_func_list.append(scan_eval_func)
cur_scan_part = best_scan_part.copy()
cur_scan_slot = best_scan_slot.copy()
cur_scan_cycle = best_scan_cycle.copy()
cur_scan_part = best_scan_part.copy()
cur_scan_slot = best_scan_slot.copy()
cur_scan_cycle = best_scan_cycle.copy()
cur_nozzle_limit = copy.deepcopy(best_scan_nozzle_limit)
cur_nozzle_limit = copy.deepcopy(best_scan_nozzle_limit)
if len(scan_eval_func_list) != 0:
if sum(scan_eval_func_list) >= best_assigned_eval_func:
best_assigned_eval_func = sum(scan_eval_func_list)
if len(scan_eval_func_list) != 0:
if sum(scan_eval_func_list) > best_assigned_eval_func:
best_assigned_eval_func = sum(scan_eval_func_list)
assigned_part = cur_scan_part.copy()
assigned_slot = cur_scan_slot.copy()
assigned_cycle = cur_scan_cycle.copy()
assigned_part = cur_scan_part.copy()
assigned_slot = cur_scan_slot.copy()
assigned_cycle = cur_scan_cycle.copy()
nozzle_insert_cycle = cycle_index
nozzle_insert_cycle = cycle_index
# 从供料器基座中移除对应数量的贴装点
nonzero_cycle = [cycle for cycle in assigned_cycle if cycle > 0]
if not nonzero_cycle:
value_increment_base -= max_head_index
# 从供料器基座中移除对应数量的贴装点
nonzero_cycle = [cycle for cycle in assigned_cycle if cycle > 0]
if not nonzero_cycle:
value_increment_base -= max_head_index
continue
for head, slot in enumerate(assigned_slot):
if assigned_part[head] == -1:
continue
component_points[feeder_part[slot]] -= min(nonzero_cycle)
for head, slot in enumerate(assigned_slot):
if assigned_part[head] == -1:
continue
component_points[feeder_part[slot]] -= min(nonzero_cycle)
insert_cycle = sum([nozzle_mode_cycle[c] for c in range(nozzle_insert_cycle + 1)])
component_result.insert(nozzle_insert_cycle, assigned_part)
cycle_result.insert(nozzle_insert_cycle, min(nonzero_cycle))
feeder_slot_result.insert(nozzle_insert_cycle, assigned_slot)
component_result.insert(insert_cycle, assigned_part)
cycle_result.insert(insert_cycle, min(nonzero_cycle))
feeder_slot_result.insert(insert_cycle, assigned_slot)
# 更新吸嘴匹配模式
cycle_nozzle = nozzle_mode[nozzle_insert_cycle].copy()
for head, component in enumerate(assigned_part):
if component == -1:
continue
cycle_nozzle[head] = component_data.loc[component].nz
# 更新吸嘴匹配模式
cycle_nozzle = nozzle_mode[nozzle_insert_cycle].copy()
for head, component in enumerate(assigned_part):
if component == -1:
continue
cycle_nozzle[head] = component_data.loc[component].nz
if cycle_nozzle == nozzle_mode[nozzle_insert_cycle]:
nozzle_mode_cycle[nozzle_insert_cycle] += 1
else:
nozzle_mode.insert(nozzle_insert_cycle + 1, cycle_nozzle)
nozzle_mode_cycle.insert(nozzle_insert_cycle + 1, 1)
pbar.update(len(pcb_data) - sum(component_points) - pbar_prev)
pbar_prev = len(pcb_data) - sum(component_points)
if sum(component_points) == 0:
break
if sum(component_points) == 0:
break
return component_result, cycle_result, feeder_slot_result

View File

@ -12,38 +12,31 @@ from base_optimizer.result_analysis import *
def base_optimizer(machine_index, pcb_data, component_data, feeder_data=None, method='', hinter=False):
if method == 'cell_division': # 基于元胞分裂的遗传算法
component_result, cycle_result, feeder_slot_result = optimizer_celldivision(pcb_data, component_data,
hinter=False)
if method == 'cell-division': # 基于元胞分裂的遗传算法
component_result, cycle_result, feeder_slot_result = optimizer_celldivision(pcb_data, component_data)
placement_result, head_sequence = greedy_placement_route_generation(component_data, pcb_data, component_result,
cycle_result, feeder_slot_result)
elif method == 'feeder_scan': # 基于基座扫描的供料器优先算法
# 第1步分配供料器位置
nozzle_pattern = feeder_allocate(component_data, pcb_data, feeder_data, figure=False)
# 第2步扫描供料器基座确定元件拾取的先后顺序
component_result, cycle_result, feeder_slot_result = feeder_base_scan(component_data, pcb_data, feeder_data,
nozzle_pattern)
# 第3步贴装路径规划
elif method == 'feeder-scan': # 基于基座扫描的供料器优先算法
component_result, cycle_result, feeder_slot_result = feeder_priority_assignment(component_data, pcb_data)
placement_result, head_sequence = greedy_placement_route_generation(component_data, pcb_data, component_result,
cycle_result, feeder_slot_result)
# placement_result, head_sequence = beam_search_for_route_generation(component_data, pcb_data, component_result,
# cycle_result, feeder_slot_result)
elif method == 'hybrid_genetic': # 基于拾取组的混合遗传算法
elif method == 'hybrid-genetic': # 基于拾取组的混合遗传算法
component_result, cycle_result, feeder_slot_result, placement_result, head_sequence = optimizer_hybrid_genetic(
pcb_data, component_data, hinter=False)
elif method == 'aggregation': # 基于batch-level的整数规划 + 启发式算法
component_result, cycle_result, feeder_slot_result, placement_result, head_sequence = optimizer_aggregation(
component_data, pcb_data)
elif method == 'genetic_scanning':
elif method == 'genetic-scanning':
component_result, cycle_result, feeder_slot_result, placement_result, head_sequence = optimizer_genetic_scanning(
component_data, pcb_data, hinter=False)
elif method == 'mip_model':
elif method == 'mip-model':
component_result, cycle_result, feeder_slot_result, placement_result, head_sequence = optimizer_mathmodel(
component_data, pcb_data, hinter=True)
elif method == "two_phase":
elif method == "two-phase":
component_result, feeder_slot_result, cycle_result = gurobi_optimizer(pcb_data, component_data, feeder_data,
initial=True, partition=True,
reduction=True, hinter=hinter)
@ -51,32 +44,11 @@ def base_optimizer(machine_index, pcb_data, component_data, feeder_data=None, me
placement_result, head_sequence = scan_based_placement_route_generation(component_data, pcb_data,
component_result, cycle_result)
else:
raise 'method is not existed'
raise 'machine optimizer method ' + method + ' is not existed'
info = OptInfo()
assigned_nozzle = ['' if idx == -1 else component_data.loc[idx]['nz'] for idx in component_result[0]]
info.cycle_counter = sum(cycle_result)
for cycle in range(len(cycle_result)):
pick_slot = set()
for head in range(max_head_index):
idx = component_result[cycle][head]
if idx == -1:
continue
nozzle = component_data.loc[idx]['nz']
if nozzle != assigned_nozzle[head]:
if assigned_nozzle[head] != '':
info.nozzle_change_counter += 1
assigned_nozzle[head] = nozzle
pick_slot.add(feeder_slot_result[cycle][head] - head * interval_ratio)
info.pickup_counter += len(pick_slot) * cycle_result[cycle]
pick_slot = list(pick_slot)
pick_slot.sort()
for idx in range(len(pick_slot) - 1):
info.pickup_movement += abs(pick_slot[idx + 1] - pick_slot[idx])
# 估算贴装用时
info = placement_info_evaluation(component_data, pcb_data, component_result, cycle_result, feeder_slot_result,
placement_result, head_sequence, hinter=False)
if hinter:
optimization_assign_result(component_data, pcb_data, component_result, cycle_result, feeder_slot_result,
@ -85,12 +57,11 @@ def base_optimizer(machine_index, pcb_data, component_data, feeder_data=None, me
print('----- Placement machine ' + str(machine_index) + ' ----- ')
print('-Cycle counter: {}'.format(info.cycle_counter))
print('-Nozzle change counter: {}'.format(info.nozzle_change_counter))
print('-Pick operation counter: {}'.format(info.pickup_counter))
print('-Pick movement: {}'.format(info.pickup_movement))
print(f'-Nozzle change counter: {info.nozzle_change_counter: d}')
print(f'-ANC round: {info.anc_round_counter: d}')
print(f'-Pick operation counter: {info.pickup_counter: d}')
print(f'-Pick time: {info.pickup_time: .3f}, distance: {info.pickup_distance: .3f}')
print(f'-Place time: {info.place_time: .3f}, distance: {info.place_distance: .3f}')
print('------------------------------ ')
# 估算贴装用时
info.placement_time = placement_time_estimate(component_data, pcb_data, component_result, cycle_result,
feeder_slot_result, placement_result, head_sequence, hinter=False)
return info

View File

@ -423,7 +423,7 @@ def optimization_assign_result(component_data, pcb_data, component_result, cycle
component_assign.loc[cycle, 'H{}'.format(head + 1)] = ''
else:
part = component_data.loc[index]['part']
component_assign.loc[cycle, 'H{}'.format(head + 1)] = part
component_assign.loc[cycle, 'H{}'.format(head + 1)] = 'C' + str(index)
print(component_assign)
print('')
@ -446,32 +446,36 @@ def optimization_assign_result(component_data, pcb_data, component_result, cycle
print('')
def placement_time_estimate(component_data, pcb_data, component_result, cycle_result, feeder_slot_result,
placement_result, head_sequence, hinter=True) -> float:
def placement_info_evaluation(component_data, pcb_data, component_result, cycle_result, feeder_slot_result,
placement_result=None, head_sequence=None, hinter=False):
# === 优化结果参数 ===
info = OptInfo()
# === 校验 ===
total_points = 0
info.total_points = 0
for cycle, components in enumerate(component_result):
for head, component in enumerate(components):
if component == -1:
continue
total_points += cycle_result[cycle]
info.total_points += cycle_result[cycle]
if total_points != len(pcb_data):
if info.total_points != len(pcb_data):
warning_info = 'the number of placement points is not match with the PCB data. '
warnings.warn(warning_info, UserWarning)
return 0.
for placements in placement_result:
for placement in placements:
if placement == -1:
continue
total_points -= 1
if placement_result:
total_points = info.total_points
for placements in placement_result:
for placement in placements:
if placement == -1:
continue
total_points -= 1
if total_points != 0:
warnings.warn(
'the optimization result of component assignment result and placement result are not consistent. ',
UserWarning)
return 0.
if total_points != 0:
warnings.warn(
'the optimization result of component assignment result and placement result are not consistent. ',
UserWarning)
return 0.
feeder_arrangement = defaultdict(set)
for cycle, feeder_slots in enumerate(feeder_slot_result):
@ -486,12 +490,6 @@ def placement_time_estimate(component_data, pcb_data, component_result, cycle_re
warnings.warn(info, UserWarning)
return 0.
total_pickup_time, total_round_time, total_place_time = .0, .0, 0 # 拾取用时、往返用时、贴装用时
total_operation_time = .0 # 操作用时
total_nozzle_change_counter = 0 # 总吸嘴更换次数
total_pick_counter = 0 # 总拾取次数
total_mount_distance, total_pick_distance = .0, .0 # 贴装距离、拾取距离
total_distance = 0 # 总移动距离
cur_pos, next_pos = anc_marker_pos, [0, 0] # 贴装头当前位置
# 初始化首个周期的吸嘴装配信息
@ -503,7 +501,6 @@ def placement_time_estimate(component_data, pcb_data, component_result, cycle_re
continue
else:
nozzle_assigned[head] = component_data.loc[idx]['nz']
break
for cycle_set, _ in enumerate(component_result):
floor_cycle, ceil_cycle = sum(cycle_result[:cycle_set]), sum(cycle_result[:(cycle_set + 1)])
@ -527,9 +524,9 @@ def placement_time_estimate(component_data, pcb_data, component_result, cycle_re
next_pos = anc_marker_pos
move_time = max(axis_moving_time(cur_pos[0] - next_pos[0], 0),
axis_moving_time(cur_pos[1] - next_pos[1], 1))
total_round_time += move_time
total_distance += max(abs(cur_pos[0] - next_pos[0]), abs(cur_pos[1] - next_pos[1]))
info.round_time += move_time
info.anc_round_counter += 1
info.total_distance += max(abs(cur_pos[0] - next_pos[0]), abs(cur_pos[1] - next_pos[1]))
cur_pos = next_pos
pick_slot = list(set(pick_slot))
@ -541,94 +538,95 @@ def placement_time_estimate(component_data, pcb_data, component_result, cycle_re
next_pos = [slotf1_pos[0] + slot_interval * (slot - 1), slotf1_pos[1]]
else:
next_pos = [slotr1_pos[0] - slot_interval * (max_slot_index - slot - 1), slotr1_pos[1]]
total_operation_time += t_pick
total_pick_counter += 1
info.operation_time += t_pick
info.pickup_counter += 1
move_time = max(axis_moving_time(cur_pos[0] - next_pos[0], 0),
axis_moving_time(cur_pos[1] - next_pos[1], 1))
if idx == 0:
total_round_time += move_time
info.round_time += move_time
else:
total_pickup_time += move_time
info.pickup_time += move_time
total_distance += max(abs(cur_pos[0] - next_pos[0]), abs(cur_pos[1] - next_pos[1]))
info.total_distance += max(abs(cur_pos[0] - next_pos[0]), abs(cur_pos[1] - next_pos[1]))
if slot != pick_slot[0]:
total_pick_distance += max(abs(cur_pos[0] - next_pos[0]), abs(cur_pos[1] - next_pos[1]))
info.pickup_distance += max(abs(cur_pos[0] - next_pos[0]), abs(cur_pos[1] - next_pos[1]))
cur_pos = next_pos
# 固定相机检测
for head in range(max_head_index):
if component_result[cycle_set][head] == -1:
continue
camera = component_data.loc[component_result[cycle_set][head]]['camera']
if camera == '固定相机':
next_pos = [fix_camera_pos[0] - head * head_interval, fix_camera_pos[1]]
move_time = max(axis_moving_time(cur_pos[0] - next_pos[0], 0),
axis_moving_time(cur_pos[1] - next_pos[1], 1))
total_round_time += move_time
total_distance += max(abs(cur_pos[0] - next_pos[0]), abs(cur_pos[1] - next_pos[1]))
total_operation_time += t_fix_camera_check
cur_pos = next_pos
# for head in range(max_head_index):
# if component_result[cycle_set][head] == -1:
# continue
# camera = component_data.loc[component_result[cycle_set][head]]['camera']
# if camera == '固定相机':
# next_pos = [fix_camera_pos[0] - head * head_interval, fix_camera_pos[1]]
# move_time = max(axis_moving_time(cur_pos[0] - next_pos[0], 0),
# axis_moving_time(cur_pos[1] - next_pos[1], 1))
# info.round_time += move_time
#
# info.total_distance += max(abs(cur_pos[0] - next_pos[0]), abs(cur_pos[1] - next_pos[1]))
# info.operation_time += t_fix_camera_check
# cur_pos = next_pos
# 贴装路径
for head in head_sequence[cycle]:
index = placement_result[cycle][head]
if index == -1:
continue
mount_pos.append([pcb_data.iloc[index]['x'] - head * head_interval + stopper_pos[0],
pcb_data.iloc[index]['y'] + stopper_pos[1]])
mount_angle.append(pcb_data.iloc[index]['r'])
if placement_result and head_sequence:
for head in head_sequence[cycle]:
index = placement_result[cycle][head]
if index == -1:
continue
mount_pos.append([pcb_data.iloc[index]['x'] - head * head_interval + stopper_pos[0],
pcb_data.iloc[index]['y'] + stopper_pos[1]])
mount_angle.append(pcb_data.iloc[index]['r'])
# 单独计算贴装路径
for cntPoints in range(len(mount_pos) - 1):
total_mount_distance += max(abs(mount_pos[cntPoints][0] - mount_pos[cntPoints + 1][0]),
abs(mount_pos[cntPoints][1] - mount_pos[cntPoints + 1][1]))
# 单独计算贴装路径
for cntPoints in range(len(mount_pos) - 1):
info.place_distance += max(abs(mount_pos[cntPoints][0] - mount_pos[cntPoints + 1][0]),
abs(mount_pos[cntPoints][1] - mount_pos[cntPoints + 1][1]))
# 考虑R轴预旋转补偿同轴角度转动带来的额外贴装用时
total_operation_time += head_rotary_time(mount_angle[0]) # 补偿角度转动带来的额外贴装用时
total_operation_time += t_nozzle_put * nozzle_put_counter + t_nozzle_pick * nozzle_pick_counter
for idx, pos in enumerate(mount_pos):
total_operation_time += t_place
move_time = max(axis_moving_time(cur_pos[0] - pos[0], 0), axis_moving_time(cur_pos[1] - pos[1], 1))
if idx == 0:
total_round_time += move_time
else:
total_place_time += move_time
# 考虑R轴预旋转补偿同轴角度转动带来的额外贴装用时
info.operation_time += head_rotary_time(mount_angle[0]) # 补偿角度转动带来的额外贴装用时
info.operation_time += t_nozzle_put * nozzle_put_counter + t_nozzle_pick * nozzle_pick_counter
for idx, pos in enumerate(mount_pos):
info.operation_time += t_place
move_time = max(axis_moving_time(cur_pos[0] - pos[0], 0), axis_moving_time(cur_pos[1] - pos[1], 1))
if idx == 0:
info.round_time += move_time
else:
info.place_time += move_time
total_distance += max(abs(cur_pos[0] - pos[0]), abs(cur_pos[1] - pos[1]))
cur_pos = pos
info.total_distance += max(abs(cur_pos[0] - pos[0]), abs(cur_pos[1] - pos[1]))
cur_pos = pos
total_nozzle_change_counter += nozzle_put_counter + nozzle_pick_counter
total_time = total_pickup_time + total_round_time + total_place_time + total_operation_time
minutes, seconds = int(total_time // 60), int(total_time) % 60
millisecond = int((total_time - minutes * 60 - seconds) * 60)
info.nozzle_change_counter += nozzle_put_counter + nozzle_pick_counter
info.total_time = info.pickup_time + info.round_time + info.place_time + info.operation_time
minutes, seconds = int(info.total_time // 60), int(info.total_time) % 60
millisecond = int((info.total_time - minutes * 60 - seconds) * 60)
info.cycle_counter = sum(cycle_result)
if hinter:
optimization_assign_result(component_data, pcb_data, component_result, cycle_result, feeder_slot_result,
nozzle_hinter=False, component_hinter=False, feeder_hinter=False)
print('-Cycle counter: {}'.format(sum(cycle_result)))
print('-Nozzle change counter: {}'.format(total_nozzle_change_counter // 2))
print('-Pick operation counter: {}'.format(total_pick_counter))
print('-Cycle counter: {}'.format(info.cycle_counter))
print('-Nozzle change counter: {}'.format(info.nozzle_change_counter // 2))
print('-Pick operation counter: {}'.format(info.pickup_counter))
print('-Expected mounting tour length: {} mm'.format(total_mount_distance))
print('-Expected picking tour length: {} mm'.format(total_pick_distance))
print('-Expected total tour length: {} mm'.format(total_distance))
print('-Expected mounting tour length: {} mm'.format(info.place_distance))
print('-Expected picking tour length: {} mm'.format(info.pickup_distance))
print('-Expected total tour length: {} mm'.format(info.total_distance))
print('-Expected total moving time: {} s with pick: {}, round: {}, place = {}'.format(
total_pickup_time + total_round_time + total_place_time, total_pickup_time, total_round_time,
total_place_time))
print('-Expected total operation time: {} s'.format(total_operation_time))
info.pickup_time + info.round_time + info.place_time, info.pickup_time, info.round_time,
info.place_time))
print('-Expected total operation time: {} s'.format(info.operation_time))
if minutes > 0:
print('-Mounting time estimation: {:d} min {} s {:2d} ms ({:.3f}s)'.format(minutes, seconds, millisecond,
total_time))
info.total_time))
else:
print('-Mounting time estimation: {} s {:2d} ms ({:.3f}s)'.format(seconds, millisecond, total_time))
print('-Mounting time estimation: {} s {:2d} ms ({:.3f}s)'.format(seconds, millisecond, info.total_time))
return total_time
return info