Merge branch 'master' of github.com:hit-lu/assembly_line_optimizer

# Conflicts:
#	optimizer.py
#	optimizer_heuristic.py
This commit is contained in:
2023-07-20 20:12:27 +08:00
2 changed files with 60 additions and 80 deletions

View File

@ -1,15 +1,18 @@
from base_optimizer.optimizer_common import *
from ortools.sat.python import cp_model
from gurobipy import *
from collections import defaultdict
def list_range(start, end=None):
return list(range(start)) if end is None else list(range(start, end))
@timer_wrapper
def optimizer_aggregation(component_data, pcb_data):
# === phase 0: data preparation ===
M = 1000 # a sufficient large number
a, b = 1, 6 # coefficient
K, I, J, L = max_head_index, 0, 0, 0 # the maximum number of heads, component types, nozzle types and batch level
component_list, nozzle_list = defaultdict(int), defaultdict(int)
cpidx_2_part, nzidx_2_nozzle = {}, {}
@ -26,10 +29,11 @@ def optimizer_aggregation(component_data, pcb_data):
nzidx_2_nozzle[len(nzidx_2_nozzle)] = nozzle
nozzle_list[nozzle] += 1
I, J = len(component_list.keys()), len(nozzle_list.keys())
L = I + 1
HC = [[M for _ in range(J)] for _ in range(I)] # the handing class when component i is handled by nozzle type j
# represent the nozzle-component compatibility
I, J = len(component_list.keys()), len(nozzle_list.keys()) # the maximum number of component types and nozzle types
L = I + 1 # the maximum number of batch level
K = max_head_index # the maximum number of heads
HC = [[M for _ in range(J)] for _ in range(I)] # represent the nozzle-component compatibility
for i in range(I):
for _, item in enumerate(cpidx_2_part.items()):
index, part = item
@ -41,105 +45,71 @@ def optimizer_aggregation(component_data, pcb_data):
HC[index][j] = 0
# === phase 1: mathematical model solver ===
model = cp_model.CpModel()
solver = cp_model.CpSolver()
mdl = Model('SMT')
mdl.setParam('OutputFlag', 0)
# === Decision Variables ===
# the number of components of type i that are placed by nozzle type j on placement head k
X = {}
for i in range(I):
for j in range(J):
for k in range(K):
X[i, j, k] = model.NewIntVar(0, component_list[cpidx_2_part[i]], 'X_{}_{}_{}'.format(i, j, k))
X = mdl.addVars(list_range(I), list_range(J), list_range(K), vtype=GRB.INTEGER, ub=max(component_list.values()))
# the total number of nozzle changes on placement head k
N = {}
for k in range(K):
N[k] = model.NewIntVar(0, J, 'N_{}'.format(k))
N = mdl.addVars(list_range(K), vtype=GRB.INTEGER)
# the largest workload of all placement heads
WL = model.NewIntVar(0, len(pcb_data), 'WL')
WL = mdl.addVar(vtype=GRB.INTEGER, lb=0, ub=len(pcb_data))
# whether batch Xijk is placed on level l
Z = {}
for i in range(I):
for j in range(J):
for l in range(L):
for k in range(K):
Z[i, j, l, k] = model.NewBoolVar('Z_{}_{}_{}_{}'.format(i, j, l, k))
Z = mdl.addVars(list_range(I), list_range(J), list_range(L), list_range(K), vtype=GRB.BINARY)
# Dlk := 2 if a change of nozzles in the level l + 1 on placement head k
# Dlk := 1 if there are no batches placed on levels higher than l
D = {}
for l in range(L):
for k in range(K):
D[l, k] = model.NewIntVar(0, 2, 'D_{}_{}'.format(l, k))
D_abs = {}
for l in range(L):
for j in range(J):
for k in range(K):
D_abs[l, j, k] = model.NewIntVar(0, M, 'D_abs_{}_{}_{}'.format(l, j, k))
# Dlk := 0 otherwise
D = mdl.addVars(list_range(L), list_range(K), vtype=GRB.BINARY, ub=2)
D_plus = mdl.addVars(list_range(L), list_range(J), list_range(K), vtype=GRB.INTEGER)
D_minus = mdl.addVars(list_range(L), list_range(J), list_range(K), vtype=GRB.INTEGER)
# == Objective function ===
model.Minimize(a * WL + b * sum(N[k] for k in range(K)))
mdl.modelSense = GRB.MINIMIZE
mdl.setObjective(a * WL + b * quicksum(N[k] for k in range(K)))
# === Constraint ===
for i in range(I):
model.Add(sum(X[i, j, k] for j in range(J) for k in range(K)) == component_list[cpidx_2_part[i]])
mdl.addConstrs(
quicksum(X[i, j, k] for j in range(J) for k in range(K)) == component_list[cpidx_2_part[i]] for i in range(I))
for k in range(K):
model.Add(sum(X[i, j, k] for i in range(I) for j in range(J)) <= WL)
mdl.addConstrs(quicksum(X[i, j, k] for i in range(I) for j in range(J)) <= WL for k in range(K))
for i in range(I):
for j in range(J):
for k in range(K):
model.Add(X[i, j, k] <= M * sum(Z[i, j, l, k] for l in range(L)))
mdl.addConstrs(
X[i, j, k] <= M * quicksum(Z[i, j, l, k] for l in range(L)) for i in range(I) for j in range(J) for k in
range(K))
for i in range(I):
for j in range(J):
for k in range(K):
model.Add(sum(Z[i, j, l, k] for l in range(L)) <= 1)
mdl.addConstrs(quicksum(Z[i, j, l, k] for l in range(L)) <= 1 for i in range(I) for j in range(J) for k in range(K))
mdl.addConstrs(
quicksum(Z[i, j, l, k] for l in range(L)) <= X[i, j, k] for i in range(I) for j in range(J) for k in range(K))
for i in range(I):
for j in range(J):
for k in range(K):
model.Add(sum(Z[i, j, l, k] for l in range(L)) <= X[i, j, k])
mdl.addConstrs(quicksum(Z[i, j, l, k] for j in range(J) for i in range(I)) >= quicksum(
Z[i, j, l + 1, k] for j in range(J) for i in range(I)) for k in range(K) for l in range(L - 1))
for k in range(K):
for l in range(L - 1):
model.Add(sum(Z[i, j, l, k] for j in range(J) for i in range(I)) >= sum(
Z[i, j, l + 1, k] for j in range(J) for i in range(I)))
mdl.addConstrs(quicksum(Z[i, j, l, k] for i in range(I) for j in range(J)) <= 1 for k in range(K) for l in range(L))
mdl.addConstrs(D_plus[l, j, k] - D_minus[l, j, k] == quicksum(Z[i, j, l, k] for i in range(I)) - quicksum(
Z[i, j, l + 1, k] for i in range(I)) for l in range(L - 1) for j in range(J) for k in range(K))
for l in range(I):
for k in range(K):
model.Add(sum(Z[i, j, l, k] for i in range(I) for j in range(J)) <= 1)
mdl.addConstrs(
D[l, k] == quicksum((D_plus[l, j, k] + D_minus[l, j, k]) for j in range(J)) for k in range(K) for l in
range(L))
for l in range(L - 1):
for j in range(J):
for k in range(K):
model.AddAbsEquality(D_abs[l, j, k],
sum(Z[i, j, l, k] for i in range(I)) - sum(Z[i, j, l + 1, k] for i in range(I)))
for k in range(K):
for l in range(L):
model.Add(D[l, k] == sum(D_abs[l, j, k] for j in range(J)))
for k in range(K):
model.Add(N[k] == sum(D[l, k] for l in range(L)) - 1)
for l in range(L):
for k in range(K):
model.Add(0 >= sum(HC[i][j] * Z[i, j, l, k] for i in range(I) for j in range(J)))
mdl.addConstrs(2 * N[k] == quicksum(D[l, k] for l in range(L)) - 1 for k in range(K))
mdl.addConstrs(
0 >= quicksum(HC[i][j] * Z[i, j, l, k] for i in range(I) for j in range(J)) for l in range(L) for k in range(K))
# === Main Process ===
component_result, cycle_result = [], []
feeder_slot_result, placement_result, head_sequence = [], [], []
solver.parameters.max_time_in_seconds = 20.0
mdl.setParam("TimeLimit", 100)
status = solver.Solve(model)
if status == cp_model.OPTIMAL or status == cp_model.FEASIBLE:
print('total cost = {}'.format(solver.ObjectiveValue()))
mdl.optimize()
if mdl.Status == GRB.OPTIMAL:
print('total cost = {}'.format(mdl.objval))
# convert cp model solution to standard output
model_cycle_result, model_component_result = [], []
@ -149,9 +119,9 @@ def optimizer_aggregation(component_data, pcb_data):
for k in range(K):
for i in range(I):
for j in range(J):
if solver.BooleanValue(Z[i, j, l, k]) != 0:
if abs(Z[i, j, l, k].x - 1) <= 1e-3:
model_component_result[-1][k] = cpidx_2_part[i]
model_cycle_result[-1][k] = solver.Value(X[i, j, k])
model_cycle_result[-1][k] = round(X[i, j, k].x)
# remove redundant term
if sum(model_cycle_result[-1]) == 0:
@ -209,7 +179,6 @@ def optimizer_aggregation(component_data, pcb_data):
if component_result[cycle_idx][head] == -1:
continue
index_ = component_result[cycle_idx][head]
placement_result[-1][head] = mount_point_pos[index_][-1][2]
mount_point_pos[index_].pop()
head_sequence.append(dynamic_programming_cycle_path(pcb_data, placement_result[-1], feeder_slot_result[cycle_idx]))

11
optimizer_spidermonkey.py Normal file
View File

@ -0,0 +1,11 @@
# implementation of
# <<Hybrid spider monkey optimisation algorithm for multi-level planning and scheduling problems of assembly lines>>
def assemblyline_optimizer_spidermonkey(pcb_data, component_data):
# number of swarms: 10
# maximum number of groups: 5
# number of loops: 100
# food source population: 50
# mutation rate: 0.1
# crossover rate: 0.9
# computation time(s): 200
pass