Merge branch 'master' of github.com:hit-lu/assembly_line_optimizer

# Conflicts:
#	optimizer.py
#	optimizer_heuristic.py
This commit is contained in:
2023-07-20 20:12:27 +08:00
2 changed files with 60 additions and 80 deletions

View File

@ -1,15 +1,18 @@
from base_optimizer.optimizer_common import * from base_optimizer.optimizer_common import *
from ortools.sat.python import cp_model from gurobipy import *
from collections import defaultdict from collections import defaultdict
def list_range(start, end=None):
return list(range(start)) if end is None else list(range(start, end))
@timer_wrapper @timer_wrapper
def optimizer_aggregation(component_data, pcb_data): def optimizer_aggregation(component_data, pcb_data):
# === phase 0: data preparation === # === phase 0: data preparation ===
M = 1000 # a sufficient large number M = 1000 # a sufficient large number
a, b = 1, 6 # coefficient a, b = 1, 6 # coefficient
K, I, J, L = max_head_index, 0, 0, 0 # the maximum number of heads, component types, nozzle types and batch level
component_list, nozzle_list = defaultdict(int), defaultdict(int) component_list, nozzle_list = defaultdict(int), defaultdict(int)
cpidx_2_part, nzidx_2_nozzle = {}, {} cpidx_2_part, nzidx_2_nozzle = {}, {}
@ -26,10 +29,11 @@ def optimizer_aggregation(component_data, pcb_data):
nzidx_2_nozzle[len(nzidx_2_nozzle)] = nozzle nzidx_2_nozzle[len(nzidx_2_nozzle)] = nozzle
nozzle_list[nozzle] += 1 nozzle_list[nozzle] += 1
I, J = len(component_list.keys()), len(nozzle_list.keys()) I, J = len(component_list.keys()), len(nozzle_list.keys()) # the maximum number of component types and nozzle types
L = I + 1 L = I + 1 # the maximum number of batch level
HC = [[M for _ in range(J)] for _ in range(I)] # the handing class when component i is handled by nozzle type j K = max_head_index # the maximum number of heads
# represent the nozzle-component compatibility HC = [[M for _ in range(J)] for _ in range(I)] # represent the nozzle-component compatibility
for i in range(I): for i in range(I):
for _, item in enumerate(cpidx_2_part.items()): for _, item in enumerate(cpidx_2_part.items()):
index, part = item index, part = item
@ -41,105 +45,71 @@ def optimizer_aggregation(component_data, pcb_data):
HC[index][j] = 0 HC[index][j] = 0
# === phase 1: mathematical model solver === # === phase 1: mathematical model solver ===
model = cp_model.CpModel() mdl = Model('SMT')
solver = cp_model.CpSolver() mdl.setParam('OutputFlag', 0)
# === Decision Variables === # === Decision Variables ===
# the number of components of type i that are placed by nozzle type j on placement head k # the number of components of type i that are placed by nozzle type j on placement head k
X = {} X = mdl.addVars(list_range(I), list_range(J), list_range(K), vtype=GRB.INTEGER, ub=max(component_list.values()))
for i in range(I):
for j in range(J):
for k in range(K):
X[i, j, k] = model.NewIntVar(0, component_list[cpidx_2_part[i]], 'X_{}_{}_{}'.format(i, j, k))
# the total number of nozzle changes on placement head k # the total number of nozzle changes on placement head k
N = {} N = mdl.addVars(list_range(K), vtype=GRB.INTEGER)
for k in range(K):
N[k] = model.NewIntVar(0, J, 'N_{}'.format(k))
# the largest workload of all placement heads # the largest workload of all placement heads
WL = model.NewIntVar(0, len(pcb_data), 'WL') WL = mdl.addVar(vtype=GRB.INTEGER, lb=0, ub=len(pcb_data))
# whether batch Xijk is placed on level l # whether batch Xijk is placed on level l
Z = {} Z = mdl.addVars(list_range(I), list_range(J), list_range(L), list_range(K), vtype=GRB.BINARY)
for i in range(I):
for j in range(J):
for l in range(L):
for k in range(K):
Z[i, j, l, k] = model.NewBoolVar('Z_{}_{}_{}_{}'.format(i, j, l, k))
# Dlk := 2 if a change of nozzles in the level l + 1 on placement head k # Dlk := 2 if a change of nozzles in the level l + 1 on placement head k
# Dlk := 1 if there are no batches placed on levels higher than l # Dlk := 1 if there are no batches placed on levels higher than l
D = {} # Dlk := 0 otherwise
for l in range(L): D = mdl.addVars(list_range(L), list_range(K), vtype=GRB.BINARY, ub=2)
for k in range(K): D_plus = mdl.addVars(list_range(L), list_range(J), list_range(K), vtype=GRB.INTEGER)
D[l, k] = model.NewIntVar(0, 2, 'D_{}_{}'.format(l, k)) D_minus = mdl.addVars(list_range(L), list_range(J), list_range(K), vtype=GRB.INTEGER)
D_abs = {}
for l in range(L):
for j in range(J):
for k in range(K):
D_abs[l, j, k] = model.NewIntVar(0, M, 'D_abs_{}_{}_{}'.format(l, j, k))
# == Objective function === # == Objective function ===
model.Minimize(a * WL + b * sum(N[k] for k in range(K))) mdl.modelSense = GRB.MINIMIZE
mdl.setObjective(a * WL + b * quicksum(N[k] for k in range(K)))
# === Constraint === # === Constraint ===
for i in range(I): mdl.addConstrs(
model.Add(sum(X[i, j, k] for j in range(J) for k in range(K)) == component_list[cpidx_2_part[i]]) quicksum(X[i, j, k] for j in range(J) for k in range(K)) == component_list[cpidx_2_part[i]] for i in range(I))
for k in range(K): mdl.addConstrs(quicksum(X[i, j, k] for i in range(I) for j in range(J)) <= WL for k in range(K))
model.Add(sum(X[i, j, k] for i in range(I) for j in range(J)) <= WL)
for i in range(I): mdl.addConstrs(
for j in range(J): X[i, j, k] <= M * quicksum(Z[i, j, l, k] for l in range(L)) for i in range(I) for j in range(J) for k in
for k in range(K): range(K))
model.Add(X[i, j, k] <= M * sum(Z[i, j, l, k] for l in range(L)))
for i in range(I): mdl.addConstrs(quicksum(Z[i, j, l, k] for l in range(L)) <= 1 for i in range(I) for j in range(J) for k in range(K))
for j in range(J): mdl.addConstrs(
for k in range(K): quicksum(Z[i, j, l, k] for l in range(L)) <= X[i, j, k] for i in range(I) for j in range(J) for k in range(K))
model.Add(sum(Z[i, j, l, k] for l in range(L)) <= 1)
for i in range(I): mdl.addConstrs(quicksum(Z[i, j, l, k] for j in range(J) for i in range(I)) >= quicksum(
for j in range(J): Z[i, j, l + 1, k] for j in range(J) for i in range(I)) for k in range(K) for l in range(L - 1))
for k in range(K):
model.Add(sum(Z[i, j, l, k] for l in range(L)) <= X[i, j, k])
for k in range(K): mdl.addConstrs(quicksum(Z[i, j, l, k] for i in range(I) for j in range(J)) <= 1 for k in range(K) for l in range(L))
for l in range(L - 1): mdl.addConstrs(D_plus[l, j, k] - D_minus[l, j, k] == quicksum(Z[i, j, l, k] for i in range(I)) - quicksum(
model.Add(sum(Z[i, j, l, k] for j in range(J) for i in range(I)) >= sum( Z[i, j, l + 1, k] for i in range(I)) for l in range(L - 1) for j in range(J) for k in range(K))
Z[i, j, l + 1, k] for j in range(J) for i in range(I)))
for l in range(I): mdl.addConstrs(
for k in range(K): D[l, k] == quicksum((D_plus[l, j, k] + D_minus[l, j, k]) for j in range(J)) for k in range(K) for l in
model.Add(sum(Z[i, j, l, k] for i in range(I) for j in range(J)) <= 1) range(L))
for l in range(L - 1): mdl.addConstrs(2 * N[k] == quicksum(D[l, k] for l in range(L)) - 1 for k in range(K))
for j in range(J): mdl.addConstrs(
for k in range(K): 0 >= quicksum(HC[i][j] * Z[i, j, l, k] for i in range(I) for j in range(J)) for l in range(L) for k in range(K))
model.AddAbsEquality(D_abs[l, j, k],
sum(Z[i, j, l, k] for i in range(I)) - sum(Z[i, j, l + 1, k] for i in range(I)))
for k in range(K):
for l in range(L):
model.Add(D[l, k] == sum(D_abs[l, j, k] for j in range(J)))
for k in range(K):
model.Add(N[k] == sum(D[l, k] for l in range(L)) - 1)
for l in range(L):
for k in range(K):
model.Add(0 >= sum(HC[i][j] * Z[i, j, l, k] for i in range(I) for j in range(J)))
# === Main Process === # === Main Process ===
component_result, cycle_result = [], [] component_result, cycle_result = [], []
feeder_slot_result, placement_result, head_sequence = [], [], [] feeder_slot_result, placement_result, head_sequence = [], [], []
solver.parameters.max_time_in_seconds = 20.0 mdl.setParam("TimeLimit", 100)
status = solver.Solve(model) mdl.optimize()
if status == cp_model.OPTIMAL or status == cp_model.FEASIBLE:
print('total cost = {}'.format(solver.ObjectiveValue())) if mdl.Status == GRB.OPTIMAL:
print('total cost = {}'.format(mdl.objval))
# convert cp model solution to standard output # convert cp model solution to standard output
model_cycle_result, model_component_result = [], [] model_cycle_result, model_component_result = [], []
@ -149,9 +119,9 @@ def optimizer_aggregation(component_data, pcb_data):
for k in range(K): for k in range(K):
for i in range(I): for i in range(I):
for j in range(J): for j in range(J):
if solver.BooleanValue(Z[i, j, l, k]) != 0: if abs(Z[i, j, l, k].x - 1) <= 1e-3:
model_component_result[-1][k] = cpidx_2_part[i] model_component_result[-1][k] = cpidx_2_part[i]
model_cycle_result[-1][k] = solver.Value(X[i, j, k]) model_cycle_result[-1][k] = round(X[i, j, k].x)
# remove redundant term # remove redundant term
if sum(model_cycle_result[-1]) == 0: if sum(model_cycle_result[-1]) == 0:
@ -209,7 +179,6 @@ def optimizer_aggregation(component_data, pcb_data):
if component_result[cycle_idx][head] == -1: if component_result[cycle_idx][head] == -1:
continue continue
index_ = component_result[cycle_idx][head] index_ = component_result[cycle_idx][head]
placement_result[-1][head] = mount_point_pos[index_][-1][2] placement_result[-1][head] = mount_point_pos[index_][-1][2]
mount_point_pos[index_].pop() mount_point_pos[index_].pop()
head_sequence.append(dynamic_programming_cycle_path(pcb_data, placement_result[-1], feeder_slot_result[cycle_idx])) head_sequence.append(dynamic_programming_cycle_path(pcb_data, placement_result[-1], feeder_slot_result[cycle_idx]))

11
optimizer_spidermonkey.py Normal file
View File

@ -0,0 +1,11 @@
# implementation of
# <<Hybrid spider monkey optimisation algorithm for multi-level planning and scheduling problems of assembly lines>>
def assemblyline_optimizer_spidermonkey(pcb_data, component_data):
# number of swarms: 10
# maximum number of groups: 5
# number of loops: 100
# food source population: 50
# mutation rate: 0.1
# crossover rate: 0.9
# computation time(s): 200
pass