修改启发式算法和遗传算法实现
This commit is contained in:
339
LICENSE
339
LICENSE
@ -1,339 +0,0 @@
|
||||
GNU GENERAL PUBLIC LICENSE
|
||||
Version 2, June 1991
|
||||
|
||||
Copyright (C) 1989, 1991 Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
||||
Everyone is permitted to copy and distribute verbatim copies
|
||||
of this license document, but changing it is not allowed.
|
||||
|
||||
Preamble
|
||||
|
||||
The licenses for most software are designed to take away your
|
||||
freedom to share and change it. By contrast, the GNU General Public
|
||||
License is intended to guarantee your freedom to share and change free
|
||||
software--to make sure the software is free for all its users. This
|
||||
General Public License applies to most of the Free Software
|
||||
Foundation's software and to any other program whose authors commit to
|
||||
using it. (Some other Free Software Foundation software is covered by
|
||||
the GNU Lesser General Public License instead.) You can apply it to
|
||||
your programs, too.
|
||||
|
||||
When we speak of free software, we are referring to freedom, not
|
||||
price. Our General Public Licenses are designed to make sure that you
|
||||
have the freedom to distribute copies of free software (and charge for
|
||||
this service if you wish), that you receive source code or can get it
|
||||
if you want it, that you can change the software or use pieces of it
|
||||
in new free programs; and that you know you can do these things.
|
||||
|
||||
To protect your rights, we need to make restrictions that forbid
|
||||
anyone to deny you these rights or to ask you to surrender the rights.
|
||||
These restrictions translate to certain responsibilities for you if you
|
||||
distribute copies of the software, or if you modify it.
|
||||
|
||||
For example, if you distribute copies of such a program, whether
|
||||
gratis or for a fee, you must give the recipients all the rights that
|
||||
you have. You must make sure that they, too, receive or can get the
|
||||
source code. And you must show them these terms so they know their
|
||||
rights.
|
||||
|
||||
We protect your rights with two steps: (1) copyright the software, and
|
||||
(2) offer you this license which gives you legal permission to copy,
|
||||
distribute and/or modify the software.
|
||||
|
||||
Also, for each author's protection and ours, we want to make certain
|
||||
that everyone understands that there is no warranty for this free
|
||||
software. If the software is modified by someone else and passed on, we
|
||||
want its recipients to know that what they have is not the original, so
|
||||
that any problems introduced by others will not reflect on the original
|
||||
authors' reputations.
|
||||
|
||||
Finally, any free program is threatened constantly by software
|
||||
patents. We wish to avoid the danger that redistributors of a free
|
||||
program will individually obtain patent licenses, in effect making the
|
||||
program proprietary. To prevent this, we have made it clear that any
|
||||
patent must be licensed for everyone's free use or not licensed at all.
|
||||
|
||||
The precise terms and conditions for copying, distribution and
|
||||
modification follow.
|
||||
|
||||
GNU GENERAL PUBLIC LICENSE
|
||||
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
|
||||
|
||||
0. This License applies to any program or other work which contains
|
||||
a notice placed by the copyright holder saying it may be distributed
|
||||
under the terms of this General Public License. The "Program", below,
|
||||
refers to any such program or work, and a "work based on the Program"
|
||||
means either the Program or any derivative work under copyright law:
|
||||
that is to say, a work containing the Program or a portion of it,
|
||||
either verbatim or with modifications and/or translated into another
|
||||
language. (Hereinafter, translation is included without limitation in
|
||||
the term "modification".) Each licensee is addressed as "you".
|
||||
|
||||
Activities other than copying, distribution and modification are not
|
||||
covered by this License; they are outside its scope. The act of
|
||||
running the Program is not restricted, and the output from the Program
|
||||
is covered only if its contents constitute a work based on the
|
||||
Program (independent of having been made by running the Program).
|
||||
Whether that is true depends on what the Program does.
|
||||
|
||||
1. You may copy and distribute verbatim copies of the Program's
|
||||
source code as you receive it, in any medium, provided that you
|
||||
conspicuously and appropriately publish on each copy an appropriate
|
||||
copyright notice and disclaimer of warranty; keep intact all the
|
||||
notices that refer to this License and to the absence of any warranty;
|
||||
and give any other recipients of the Program a copy of this License
|
||||
along with the Program.
|
||||
|
||||
You may charge a fee for the physical act of transferring a copy, and
|
||||
you may at your option offer warranty protection in exchange for a fee.
|
||||
|
||||
2. You may modify your copy or copies of the Program or any portion
|
||||
of it, thus forming a work based on the Program, and copy and
|
||||
distribute such modifications or work under the terms of Section 1
|
||||
above, provided that you also meet all of these conditions:
|
||||
|
||||
a) You must cause the modified files to carry prominent notices
|
||||
stating that you changed the files and the date of any change.
|
||||
|
||||
b) You must cause any work that you distribute or publish, that in
|
||||
whole or in part contains or is derived from the Program or any
|
||||
part thereof, to be licensed as a whole at no charge to all third
|
||||
parties under the terms of this License.
|
||||
|
||||
c) If the modified program normally reads commands interactively
|
||||
when run, you must cause it, when started running for such
|
||||
interactive use in the most ordinary way, to print or display an
|
||||
announcement including an appropriate copyright notice and a
|
||||
notice that there is no warranty (or else, saying that you provide
|
||||
a warranty) and that users may redistribute the program under
|
||||
these conditions, and telling the user how to view a copy of this
|
||||
License. (Exception: if the Program itself is interactive but
|
||||
does not normally print such an announcement, your work based on
|
||||
the Program is not required to print an announcement.)
|
||||
|
||||
These requirements apply to the modified work as a whole. If
|
||||
identifiable sections of that work are not derived from the Program,
|
||||
and can be reasonably considered independent and separate works in
|
||||
themselves, then this License, and its terms, do not apply to those
|
||||
sections when you distribute them as separate works. But when you
|
||||
distribute the same sections as part of a whole which is a work based
|
||||
on the Program, the distribution of the whole must be on the terms of
|
||||
this License, whose permissions for other licensees extend to the
|
||||
entire whole, and thus to each and every part regardless of who wrote it.
|
||||
|
||||
Thus, it is not the intent of this section to claim rights or contest
|
||||
your rights to work written entirely by you; rather, the intent is to
|
||||
exercise the right to control the distribution of derivative or
|
||||
collective works based on the Program.
|
||||
|
||||
In addition, mere aggregation of another work not based on the Program
|
||||
with the Program (or with a work based on the Program) on a volume of
|
||||
a storage or distribution medium does not bring the other work under
|
||||
the scope of this License.
|
||||
|
||||
3. You may copy and distribute the Program (or a work based on it,
|
||||
under Section 2) in object code or executable form under the terms of
|
||||
Sections 1 and 2 above provided that you also do one of the following:
|
||||
|
||||
a) Accompany it with the complete corresponding machine-readable
|
||||
source code, which must be distributed under the terms of Sections
|
||||
1 and 2 above on a medium customarily used for software interchange; or,
|
||||
|
||||
b) Accompany it with a written offer, valid for at least three
|
||||
years, to give any third party, for a charge no more than your
|
||||
cost of physically performing source distribution, a complete
|
||||
machine-readable copy of the corresponding source code, to be
|
||||
distributed under the terms of Sections 1 and 2 above on a medium
|
||||
customarily used for software interchange; or,
|
||||
|
||||
c) Accompany it with the information you received as to the offer
|
||||
to distribute corresponding source code. (This alternative is
|
||||
allowed only for noncommercial distribution and only if you
|
||||
received the program in object code or executable form with such
|
||||
an offer, in accord with Subsection b above.)
|
||||
|
||||
The source code for a work means the preferred form of the work for
|
||||
making modifications to it. For an executable work, complete source
|
||||
code means all the source code for all modules it contains, plus any
|
||||
associated interface definition files, plus the scripts used to
|
||||
control compilation and installation of the executable. However, as a
|
||||
special exception, the source code distributed need not include
|
||||
anything that is normally distributed (in either source or binary
|
||||
form) with the major components (compiler, kernel, and so on) of the
|
||||
operating system on which the executable runs, unless that component
|
||||
itself accompanies the executable.
|
||||
|
||||
If distribution of executable or object code is made by offering
|
||||
access to copy from a designated place, then offering equivalent
|
||||
access to copy the source code from the same place counts as
|
||||
distribution of the source code, even though third parties are not
|
||||
compelled to copy the source along with the object code.
|
||||
|
||||
4. You may not copy, modify, sublicense, or distribute the Program
|
||||
except as expressly provided under this License. Any attempt
|
||||
otherwise to copy, modify, sublicense or distribute the Program is
|
||||
void, and will automatically terminate your rights under this License.
|
||||
However, parties who have received copies, or rights, from you under
|
||||
this License will not have their licenses terminated so long as such
|
||||
parties remain in full compliance.
|
||||
|
||||
5. You are not required to accept this License, since you have not
|
||||
signed it. However, nothing else grants you permission to modify or
|
||||
distribute the Program or its derivative works. These actions are
|
||||
prohibited by law if you do not accept this License. Therefore, by
|
||||
modifying or distributing the Program (or any work based on the
|
||||
Program), you indicate your acceptance of this License to do so, and
|
||||
all its terms and conditions for copying, distributing or modifying
|
||||
the Program or works based on it.
|
||||
|
||||
6. Each time you redistribute the Program (or any work based on the
|
||||
Program), the recipient automatically receives a license from the
|
||||
original licensor to copy, distribute or modify the Program subject to
|
||||
these terms and conditions. You may not impose any further
|
||||
restrictions on the recipients' exercise of the rights granted herein.
|
||||
You are not responsible for enforcing compliance by third parties to
|
||||
this License.
|
||||
|
||||
7. If, as a consequence of a court judgment or allegation of patent
|
||||
infringement or for any other reason (not limited to patent issues),
|
||||
conditions are imposed on you (whether by court order, agreement or
|
||||
otherwise) that contradict the conditions of this License, they do not
|
||||
excuse you from the conditions of this License. If you cannot
|
||||
distribute so as to satisfy simultaneously your obligations under this
|
||||
License and any other pertinent obligations, then as a consequence you
|
||||
may not distribute the Program at all. For example, if a patent
|
||||
license would not permit royalty-free redistribution of the Program by
|
||||
all those who receive copies directly or indirectly through you, then
|
||||
the only way you could satisfy both it and this License would be to
|
||||
refrain entirely from distribution of the Program.
|
||||
|
||||
If any portion of this section is held invalid or unenforceable under
|
||||
any particular circumstance, the balance of the section is intended to
|
||||
apply and the section as a whole is intended to apply in other
|
||||
circumstances.
|
||||
|
||||
It is not the purpose of this section to induce you to infringe any
|
||||
patents or other property right claims or to contest validity of any
|
||||
such claims; this section has the sole purpose of protecting the
|
||||
integrity of the free software distribution system, which is
|
||||
implemented by public license practices. Many people have made
|
||||
generous contributions to the wide range of software distributed
|
||||
through that system in reliance on consistent application of that
|
||||
system; it is up to the author/donor to decide if he or she is willing
|
||||
to distribute software through any other system and a licensee cannot
|
||||
impose that choice.
|
||||
|
||||
This section is intended to make thoroughly clear what is believed to
|
||||
be a consequence of the rest of this License.
|
||||
|
||||
8. If the distribution and/or use of the Program is restricted in
|
||||
certain countries either by patents or by copyrighted interfaces, the
|
||||
original copyright holder who places the Program under this License
|
||||
may add an explicit geographical distribution limitation excluding
|
||||
those countries, so that distribution is permitted only in or among
|
||||
countries not thus excluded. In such case, this License incorporates
|
||||
the limitation as if written in the body of this License.
|
||||
|
||||
9. The Free Software Foundation may publish revised and/or new versions
|
||||
of the General Public License from time to time. Such new versions will
|
||||
be similar in spirit to the present version, but may differ in detail to
|
||||
address new problems or concerns.
|
||||
|
||||
Each version is given a distinguishing version number. If the Program
|
||||
specifies a version number of this License which applies to it and "any
|
||||
later version", you have the option of following the terms and conditions
|
||||
either of that version or of any later version published by the Free
|
||||
Software Foundation. If the Program does not specify a version number of
|
||||
this License, you may choose any version ever published by the Free Software
|
||||
Foundation.
|
||||
|
||||
10. If you wish to incorporate parts of the Program into other free
|
||||
programs whose distribution conditions are different, write to the author
|
||||
to ask for permission. For software which is copyrighted by the Free
|
||||
Software Foundation, write to the Free Software Foundation; we sometimes
|
||||
make exceptions for this. Our decision will be guided by the two goals
|
||||
of preserving the free status of all derivatives of our free software and
|
||||
of promoting the sharing and reuse of software generally.
|
||||
|
||||
NO WARRANTY
|
||||
|
||||
11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
|
||||
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
|
||||
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
|
||||
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
|
||||
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
||||
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
|
||||
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
|
||||
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
|
||||
REPAIR OR CORRECTION.
|
||||
|
||||
12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
|
||||
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
|
||||
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
|
||||
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
|
||||
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
|
||||
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
|
||||
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
|
||||
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
|
||||
POSSIBILITY OF SUCH DAMAGES.
|
||||
|
||||
END OF TERMS AND CONDITIONS
|
||||
|
||||
How to Apply These Terms to Your New Programs
|
||||
|
||||
If you develop a new program, and you want it to be of the greatest
|
||||
possible use to the public, the best way to achieve this is to make it
|
||||
free software which everyone can redistribute and change under these terms.
|
||||
|
||||
To do so, attach the following notices to the program. It is safest
|
||||
to attach them to the start of each source file to most effectively
|
||||
convey the exclusion of warranty; and each file should have at least
|
||||
the "copyright" line and a pointer to where the full notice is found.
|
||||
|
||||
<one line to give the program's name and a brief idea of what it does.>
|
||||
Copyright (C) <year> <name of author>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
Also add information on how to contact you by electronic and paper mail.
|
||||
|
||||
If the program is interactive, make it output a short notice like this
|
||||
when it starts in an interactive mode:
|
||||
|
||||
Gnomovision version 69, Copyright (C) year name of author
|
||||
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
|
||||
This is free software, and you are welcome to redistribute it
|
||||
under certain conditions; type `show c' for details.
|
||||
|
||||
The hypothetical commands `show w' and `show c' should show the appropriate
|
||||
parts of the General Public License. Of course, the commands you use may
|
||||
be called something other than `show w' and `show c'; they could even be
|
||||
mouse-clicks or menu items--whatever suits your program.
|
||||
|
||||
You should also get your employer (if you work as a programmer) or your
|
||||
school, if any, to sign a "copyright disclaimer" for the program, if
|
||||
necessary. Here is a sample; alter the names:
|
||||
|
||||
Yoyodyne, Inc., hereby disclaims all copyright interest in the program
|
||||
`Gnomovision' (which makes passes at compilers) written by James Hacker.
|
||||
|
||||
<signature of Ty Coon>, 1 April 1989
|
||||
Ty Coon, President of Vice
|
||||
|
||||
This General Public License does not permit incorporating your program into
|
||||
proprietary programs. If your program is a subroutine library, you may
|
||||
consider it more useful to permit linking proprietary applications with the
|
||||
library. If this is what you want to do, use the GNU Lesser General
|
||||
Public License instead of this License.
|
@ -49,6 +49,12 @@ feeder_width = {'SM8': (7.25, 7.25), 'SM12': (7.00, 20.00), 'SM16': (7.00, 22.00
|
||||
# 可用吸嘴数量限制
|
||||
nozzle_limit = {'CN065': 6, 'CN040': 6, 'CN220': 6, 'CN400': 6, 'CN140': 6}
|
||||
|
||||
# 时间参数
|
||||
t_cycle = 0.3
|
||||
t_pick, t_place = .078, .051 # 贴装/拾取用时
|
||||
t_nozzle_put, t_nozzle_pick = 0.9, 0.75 # 装卸吸嘴用时
|
||||
t_nozzle_change = t_nozzle_put + t_nozzle_pick
|
||||
t_fix_camera_check = 0.12 # 固定相机检测时间
|
||||
|
||||
def axis_moving_time(distance, axis=0):
|
||||
distance = abs(distance) * 1e-3
|
||||
@ -880,7 +886,7 @@ def constraint_swap_mutation(component_points, individual):
|
||||
offspring = individual.copy()
|
||||
|
||||
idx, component_index = 0, random.randint(0, len(component_points) - 1)
|
||||
for points in component_points.values():
|
||||
for _, points in component_points:
|
||||
if component_index == 0:
|
||||
while True:
|
||||
index1, index2 = random.sample(range(points + max_machine_index - 2), 2)
|
||||
|
@ -2,7 +2,7 @@ from base_optimizer.optimizer_common import *
|
||||
|
||||
|
||||
@timer_wrapper
|
||||
def feeder_allocate(component_data, pcb_data, feeder_data, nozzle_pattern, figure=False):
|
||||
def feeder_allocate(component_data, pcb_data, feeder_data, figure=False):
|
||||
|
||||
feeder_points, feeder_division_points = defaultdict(int), defaultdict(int) # 供料器贴装点数
|
||||
mount_center_pos = defaultdict(int)
|
||||
|
@ -234,8 +234,8 @@ def cal_individual_val(component_nozzle, component_point_pos, designated_nozzle,
|
||||
return V[-1], pickup_result, pickup_cycle_result
|
||||
|
||||
|
||||
def convert_individual_2_result(component_data, component_point_pos, designated_nozzle, pickup_group, pickup_group_cycle,
|
||||
pair_group, feeder_lane, individual):
|
||||
def convert_individual_2_result(component_data, component_point_pos, designated_nozzle, pickup_group,
|
||||
pickup_group_cycle, pair_group, feeder_lane, individual):
|
||||
component_result, cycle_result, feeder_slot_result = [], [], []
|
||||
placement_result, head_sequence_result = [], []
|
||||
|
||||
@ -418,19 +418,19 @@ def optimizer_hybrid_genetic(pcb_data, component_data, hinter=True):
|
||||
pick_part = pickup[pickup_index]
|
||||
|
||||
# 检查槽位占用情况
|
||||
if feeder_lane[slot] is not None and pick_part is not None:
|
||||
if feeder_lane[slot] and pick_part:
|
||||
assign_available = False
|
||||
break
|
||||
|
||||
# 检查机械限位冲突
|
||||
if pick_part is not None and (slot - CT_Head[pick_part][0] * interval_ratio <= 0 or
|
||||
slot + (max_head_index - CT_Head[pick_part][1] - 1) * interval_ratio > max_slot_index // 2):
|
||||
if pick_part and (slot - CT_Head[pick_part][0] * interval_ratio <= 0 or slot + (
|
||||
max_head_index - CT_Head[pick_part][1] - 1) * interval_ratio > max_slot_index // 2):
|
||||
assign_available = False
|
||||
break
|
||||
|
||||
if assign_available:
|
||||
for idx, component in enumerate(pickup):
|
||||
if component is not None:
|
||||
if component:
|
||||
feeder_lane[assign_slot + idx * interval_ratio] = component
|
||||
CT_Group_slot[CTIdx] = assign_slot
|
||||
break
|
||||
@ -509,32 +509,31 @@ def optimizer_hybrid_genetic(pcb_data, component_data, hinter=True):
|
||||
|
||||
with tqdm(total=n_generations) as pbar:
|
||||
pbar.set_description('hybrid genetic process')
|
||||
|
||||
for _ in range(n_generations):
|
||||
# calculate fitness value
|
||||
pop_val = []
|
||||
for pop_idx, individual in enumerate(population):
|
||||
val, _, _ = cal_individual_val(component_nozzle, component_point_pos, designated_nozzle, pickup_group,
|
||||
pickup_group_cycle, pair_group, feeder_part_arrange, individual)
|
||||
pop_val.append(val)
|
||||
pop_val.append(val) # val is related to assembly time
|
||||
|
||||
idx = np.argmin(pop_val)
|
||||
if len(best_pop_val) == 0 or pop_val[idx] < best_pop_val[-1]:
|
||||
best_individual = copy.deepcopy(population[idx])
|
||||
best_pop_val.append(pop_val[idx])
|
||||
for _ in range(n_generations):
|
||||
# idx = np.argmin(pop_val)
|
||||
# if len(best_pop_val) == 0 or pop_val[idx] < best_pop_val[-1]:
|
||||
# best_individual = copy.deepcopy(population[idx])
|
||||
# best_pop_val.append(pop_val[idx])
|
||||
|
||||
# min-max convert
|
||||
max_val = 1.5 * max(pop_val)
|
||||
pop_val = list(map(lambda v: max_val - v, pop_val))
|
||||
convert_pop_val = list(map(lambda v: max_val - v, pop_val))
|
||||
|
||||
# crossover and mutation
|
||||
c = 0
|
||||
new_population = []
|
||||
new_population, new_pop_val = [], []
|
||||
for pop in range(population_size):
|
||||
if pop % 2 == 0 and np.random.random() < crossover_rate:
|
||||
index1, index2 = roulette_wheel_selection(pop_val), -1
|
||||
index1, index2 = roulette_wheel_selection(convert_pop_val), -1
|
||||
while True:
|
||||
index2 = roulette_wheel_selection(pop_val)
|
||||
index2 = roulette_wheel_selection(convert_pop_val)
|
||||
if index1 != index2:
|
||||
break
|
||||
# 两点交叉算子
|
||||
@ -552,13 +551,27 @@ def optimizer_hybrid_genetic(pcb_data, component_data, hinter=True):
|
||||
new_population.append(offspring1)
|
||||
new_population.append(offspring2)
|
||||
|
||||
# selection
|
||||
top_k_index = get_top_k_value(pop_val, population_size - len(new_population))
|
||||
val, _, _ = cal_individual_val(component_nozzle, component_point_pos, designated_nozzle,
|
||||
pickup_group,
|
||||
pickup_group_cycle, pair_group, feeder_part_arrange, offspring1)
|
||||
new_pop_val.append(val)
|
||||
|
||||
val, _, _ = cal_individual_val(component_nozzle, component_point_pos, designated_nozzle,
|
||||
pickup_group,
|
||||
pickup_group_cycle, pair_group, feeder_part_arrange, offspring2)
|
||||
new_pop_val.append(val)
|
||||
|
||||
# generate next generation
|
||||
top_k_index = get_top_k_value(pop_val, population_size - len(new_population), reverse=False)
|
||||
for index in top_k_index:
|
||||
new_population.append(population[index])
|
||||
new_pop_val.append(pop_val[index])
|
||||
|
||||
population = new_population
|
||||
pop_val = new_pop_val
|
||||
pbar.update(1)
|
||||
|
||||
best_individual = population[np.argmin(pop_val)]
|
||||
|
||||
return convert_individual_2_result(component_data, component_point_pos, designated_nozzle, pickup_group,
|
||||
pickup_group_cycle, pair_group, feeder_lane, best_individual)
|
||||
|
@ -3,11 +3,11 @@ from base_optimizer.optimizer_common import *
|
||||
|
||||
|
||||
@timer_wrapper
|
||||
def optimizer_scanbased(component_data, pcb_data, hinter):
|
||||
def optimizer_genetic_scanning(component_data, pcb_data, hinter):
|
||||
|
||||
population_size = 200 # 种群规模
|
||||
crossover_rate, mutation_rate = .4, .02
|
||||
n_generation = 5
|
||||
n_generation = 500
|
||||
|
||||
component_points = [0] * len(component_data)
|
||||
for i in range(len(pcb_data)):
|
||||
@ -31,50 +31,52 @@ def optimizer_scanbased(component_data, pcb_data, hinter):
|
||||
|
||||
pop_val.append(feeder_arrange_evaluate(feeder_slot_result, cycle_result))
|
||||
|
||||
# todo: 过程写的有问题,暂时不想改
|
||||
sigma_scaling(pop_val, 1)
|
||||
|
||||
with tqdm(total=n_generation) as pbar:
|
||||
pbar.set_description('hybrid genetic process')
|
||||
new_pop_val, new_pop_individual = [], []
|
||||
|
||||
# min-max convert
|
||||
max_val = 1.5 * max(pop_val)
|
||||
convert_pop_val = list(map(lambda v: max_val - v, pop_val))
|
||||
for _ in range(n_generation):
|
||||
# 交叉
|
||||
for pop in range(population_size):
|
||||
if pop % 2 == 0 and np.random.random() < crossover_rate:
|
||||
index1, index2 = roulette_wheel_selection(pop_val), -1
|
||||
index1, index2 = roulette_wheel_selection(convert_pop_val), -1
|
||||
while True:
|
||||
index2 = roulette_wheel_selection(pop_val)
|
||||
index2 = roulette_wheel_selection(convert_pop_val)
|
||||
if index1 != index2:
|
||||
break
|
||||
|
||||
# 两点交叉算子
|
||||
offspring1, offspring2 = cycle_crossover(pop_individual[index1], pop_individual[index2])
|
||||
|
||||
_, cycle_result, feeder_slot_result = convert_individual_2_result(component_points, offspring1)
|
||||
pop_val.append(feeder_arrange_evaluate(feeder_slot_result, cycle_result))
|
||||
pop_individual.append(offspring1)
|
||||
|
||||
_, cycle_result, feeder_slot_result = convert_individual_2_result(component_points, offspring2)
|
||||
pop_val.append(feeder_arrange_evaluate(feeder_slot_result, cycle_result))
|
||||
pop_individual.append(offspring2)
|
||||
|
||||
sigma_scaling(pop_val, 1)
|
||||
|
||||
# 变异
|
||||
if np.random.random() < mutation_rate:
|
||||
index_ = roulette_wheel_selection(pop_val)
|
||||
offspring = swap_mutation(pop_individual[index_])
|
||||
_, cycle_result, feeder_slot_result = convert_individual_2_result(component_points, offspring)
|
||||
offspring1 = swap_mutation(offspring1)
|
||||
|
||||
pop_val.append(feeder_arrange_evaluate(feeder_slot_result, cycle_result))
|
||||
pop_individual.append(offspring)
|
||||
if np.random.random() < mutation_rate:
|
||||
offspring2 = swap_mutation(offspring2)
|
||||
|
||||
_, cycle_result, feeder_slot_result = convert_individual_2_result(component_points, offspring1)
|
||||
new_pop_val.append(feeder_arrange_evaluate(feeder_slot_result, cycle_result))
|
||||
new_pop_individual.append(offspring1)
|
||||
|
||||
_, cycle_result, feeder_slot_result = convert_individual_2_result(component_points, offspring2)
|
||||
new_pop_val.append(feeder_arrange_evaluate(feeder_slot_result, cycle_result))
|
||||
new_pop_individual.append(offspring2)
|
||||
|
||||
# generate next generation
|
||||
top_k_index = get_top_k_value(pop_val, population_size - len(new_pop_individual), reverse=False)
|
||||
for index in top_k_index:
|
||||
new_pop_individual.append(pop_individual[index])
|
||||
new_pop_val.append(pop_val[index])
|
||||
|
||||
pop_individual, pop_val = new_pop_individual, new_pop_val
|
||||
sigma_scaling(pop_val, 1)
|
||||
|
||||
new_population, new_popval = [], []
|
||||
for index in get_top_k_value(pop_val, population_size):
|
||||
new_population.append(pop_individual[index])
|
||||
new_popval.append(pop_val[index])
|
||||
|
||||
pop_individual, pop_val = new_population, new_popval
|
||||
|
||||
# select the best individual
|
||||
pop = np.argmin(pop_val)
|
||||
component_result, cycle_result, feeder_slot_result = convert_individual_2_result(component_points, pop_individual[pop])
|
||||
@ -98,7 +100,6 @@ def convert_individual_2_result(component_points, pop):
|
||||
feeder_part[gene], feeder_base_points[gene] = idx, component_points[idx]
|
||||
|
||||
# TODO: 暂时未考虑可用吸嘴数的限制
|
||||
# for _ in range(math.ceil(sum(component_points) / max_head_index)):
|
||||
while True:
|
||||
# === 周期内循环 ===
|
||||
assigned_part = [-1 for _ in range(max_head_index)] # 当前扫描到的头分配元件信息
|
||||
|
@ -27,7 +27,7 @@ def load_data(filename: str, default_feeder_limit=1, load_cp_data=True, load_fee
|
||||
|
||||
# 注册元件检查
|
||||
part_feeder_assign = defaultdict(set)
|
||||
part_col = ["part", "desc", "fdr", "nz", 'camera', 'group', 'feeder-limit']
|
||||
part_col = ["part", "desc", "fdr", "nz", 'camera', 'group', 'feeder-limit', 'points']
|
||||
try:
|
||||
if load_cp_data:
|
||||
component_data = pd.DataFrame(pd.read_csv(filepath_or_buffer='component.txt', sep='\t', header=None),
|
||||
@ -40,18 +40,18 @@ def load_data(filename: str, default_feeder_limit=1, load_cp_data=True, load_fee
|
||||
for _, data in pcb_data.iterrows():
|
||||
part, nozzle = data.part, data.nz.split(' ')[1]
|
||||
slot = data['fdr'].split(' ')[0]
|
||||
|
||||
if part not in component_data['part'].values:
|
||||
if not cp_auto_register:
|
||||
raise Exception("unregistered component: " + component_data['part'].values)
|
||||
else:
|
||||
component_data = pd.concat([component_data, pd.DataFrame(
|
||||
[part, '', 'SM8', nozzle, '飞行相机1', 'CHIP-Rect', default_feeder_limit], index=part_col).T],
|
||||
[part, '', 'SM8', nozzle, '飞行相机1', 'CHIP-Rect', default_feeder_limit, 0], index=part_col).T],
|
||||
ignore_index=True)
|
||||
# warning_info = 'register component ' + part + ' with default feeder type'
|
||||
# warnings.warn(warning_info, UserWarning)
|
||||
part_index = component_data[component_data['part'] == part].index.tolist()[0]
|
||||
part_feeder_assign[part].add(slot)
|
||||
component_data.loc[part_index]['points'] += 1
|
||||
|
||||
if nozzle != 'A' and component_data.loc[part_index]['nz'] != nozzle:
|
||||
warning_info = 'the nozzle type of component ' + part + ' is not consistent with the pcb data'
|
||||
@ -64,9 +64,8 @@ def load_data(filename: str, default_feeder_limit=1, load_cp_data=True, load_fee
|
||||
# 读取供料器基座数据
|
||||
feeder_data = pd.DataFrame(columns=['slot', 'part', 'arg']) # arg表示是否为预分配,不表示分配数目
|
||||
if load_feeder_data:
|
||||
for data in pcb_data.iterrows():
|
||||
fdr = data[1]['fdr']
|
||||
slot, part = fdr.split(' ')
|
||||
for _, data in pcb_data.iterrows():
|
||||
slot, part = data['fdr'].split(' ')
|
||||
if slot[0] != 'F' and slot[0] != 'R':
|
||||
continue
|
||||
slot = int(slot[1:]) if slot[0] == 'F' else int(slot[1:]) + max_slot_index // 2
|
||||
@ -80,6 +79,5 @@ def load_data(filename: str, default_feeder_limit=1, load_cp_data=True, load_fee
|
||||
|
||||
feeder_data.sort_values(by='slot', ascending=True, inplace=True, ignore_index=True)
|
||||
|
||||
# plt.scatter(pcb_data["x"], pcb_data["y"])
|
||||
# plt.show()
|
||||
pcb_data = pcb_data.sort_values(by="x", ascending=False)
|
||||
return pcb_data, component_data, feeder_data
|
||||
|
119
optimizer.py
119
optimizer.py
@ -1,24 +1,34 @@
|
||||
import copy
|
||||
import math
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import pandas as pd
|
||||
|
||||
from base_optimizer.optimizer_aggregation import *
|
||||
from base_optimizer.optimizer_scanbased import *
|
||||
from base_optimizer.optimizer_celldivision import *
|
||||
from base_optimizer.optimizer_hybridgenetic import *
|
||||
from base_optimizer.optimizer_feederpriority import *
|
||||
|
||||
from dataloader import *
|
||||
|
||||
from optimizer_genetic import *
|
||||
from optimizer_heuristic import *
|
||||
|
||||
|
||||
def optimizer(pcb_data, component_data, assembly_line_optimizer, single_machine_optimizer):
|
||||
assignment_result = assemblyline_optimizer_genetic(pcb_data, component_data)
|
||||
def deviation(data):
|
||||
assert len(data) > 0
|
||||
average, variance = sum(data) / len(data), 0
|
||||
for v in data:
|
||||
variance += (v - average) ** 2
|
||||
return variance / len(data)
|
||||
|
||||
# assignment_result = [[0, 0, 0, 0, 216, 0, 0], [0, 0, 0, 0, 216, 0, 0], [36, 24, 12, 12, 0, 36, 12]]
|
||||
|
||||
def optimizer(pcb_data, component_data, assembly_line_optimizer, single_machine_optimizer):
|
||||
# todo: 由于吸嘴更换更因素的存在,在处理PCB8数据时,遗传算法因在负载均衡过程中对这一因素进行了考虑,性能更优
|
||||
# assignment_result = assemblyline_optimizer_heuristic(pcb_data, component_data)
|
||||
assignment_result = assemblyline_optimizer_genetic(pcb_data, component_data)
|
||||
print(assignment_result)
|
||||
|
||||
assignment_result_cpy = copy.deepcopy(assignment_result)
|
||||
placement_points, placement_time = [], []
|
||||
partial_pcb_data, partial_component_data = defaultdict(pd.DataFrame), defaultdict(pd.DataFrame)
|
||||
for machine_index in range(max_machine_index):
|
||||
@ -26,7 +36,9 @@ def optimizer(pcb_data, component_data, assembly_line_optimizer, single_machine_
|
||||
partial_component_data[machine_index] = component_data.copy(deep=True)
|
||||
placement_points.append(sum(assignment_result[machine_index]))
|
||||
|
||||
# averagely assign available feeder
|
||||
assert sum(placement_points) == len(pcb_data)
|
||||
|
||||
# === averagely assign available feeder ===
|
||||
for part_index, data in component_data.iterrows():
|
||||
feeder_limit = data['feeder-limit']
|
||||
feeder_points = [assignment_result[machine_index][part_index] for machine_index in range(max_machine_index)]
|
||||
@ -49,11 +61,14 @@ def optimizer(pcb_data, component_data, assembly_line_optimizer, single_machine_
|
||||
partial_component_data[machine_index].loc[part_index]['feeder-limit'] += 1
|
||||
feeder_limit -= 1
|
||||
|
||||
for machine_index in range(max_machine_index):
|
||||
if feeder_points[machine_index] > 0:
|
||||
assert partial_component_data[machine_index].loc[part_index]['feeder-limit'] > 0
|
||||
|
||||
# === assign placements ===
|
||||
component_machine_index = [0 for _ in range(len(component_data))]
|
||||
pcb_data = pcb_data.sort_values(by="x", ascending=False)
|
||||
for _, data in pcb_data.iterrows():
|
||||
part = data['part']
|
||||
part_index = component_data[component_data['part'] == part].index.tolist()[0]
|
||||
part_index = component_data[component_data['part'] == data['part']].index.tolist()[0]
|
||||
while True:
|
||||
machine_index = component_machine_index[part_index]
|
||||
if assignment_result[machine_index][part_index] == 0:
|
||||
@ -64,11 +79,60 @@ def optimizer(pcb_data, component_data, assembly_line_optimizer, single_machine_
|
||||
assignment_result[machine_index][part_index] -= 1
|
||||
partial_pcb_data[machine_index] = pd.concat([partial_pcb_data[machine_index], pd.DataFrame(data).T])
|
||||
|
||||
# === adjust the number of available feeders for single optimization separately ===
|
||||
for machine_index, data in partial_pcb_data.items():
|
||||
data = data.reset_index(drop=True)
|
||||
if len(data) == 0:
|
||||
continue
|
||||
|
||||
part_info = [] # part info list:(part index, part points, available feeder-num, upper feeder-num)
|
||||
for part_index, cp_data in partial_component_data[machine_index].iterrows():
|
||||
if assignment_result_cpy[machine_index][part_index]:
|
||||
part_info.append(
|
||||
[part_index, assignment_result_cpy[machine_index][part_index], 1, cp_data['feeder-limit']])
|
||||
|
||||
part_info = sorted(part_info, key=lambda x: x[1], reverse=True)
|
||||
start_index, end_index = 0, min(max_head_index - 1, len(part_info) - 1)
|
||||
while start_index < len(part_info):
|
||||
assign_part_point, assign_part_index = [], []
|
||||
for idx_ in range(start_index, end_index + 1):
|
||||
for _ in range(part_info[idx_][2]):
|
||||
assign_part_point.append(part_info[idx_][1] / part_info[idx_][2])
|
||||
assign_part_index.append(idx_)
|
||||
|
||||
variance = deviation(assign_part_point)
|
||||
while start_index != end_index:
|
||||
part_info_index = assign_part_index[np.argmax(assign_part_point)]
|
||||
|
||||
if part_info[part_info_index][2] < part_info[part_info_index][3]: # 供料器数目上限的限制
|
||||
part_info[part_info_index][2] += 1
|
||||
end_index -= 1
|
||||
|
||||
new_assign_part_point, new_assign_part_index = [], []
|
||||
for idx_ in range(start_index, end_index + 1):
|
||||
for _ in range(part_info[idx_][2]):
|
||||
new_assign_part_point.append(part_info[idx_][1] / part_info[idx_][2])
|
||||
new_assign_part_index.append(idx_)
|
||||
|
||||
new_variance = deviation(new_assign_part_point)
|
||||
if variance < new_variance:
|
||||
part_info[part_info_index][2] -= 1
|
||||
end_index += 1
|
||||
break
|
||||
|
||||
variance = new_variance
|
||||
assign_part_index, assign_part_point = new_assign_part_index, new_assign_part_point
|
||||
else:
|
||||
break
|
||||
|
||||
start_index = end_index + 1
|
||||
end_index = min(start_index + max_head_index - 1, len(part_info) - 1)
|
||||
|
||||
# update available feeder number
|
||||
max_avl_feeder = max(part_info, key=lambda x: x[2])[2]
|
||||
for info in part_info:
|
||||
partial_component_data[machine_index].loc[info[0]]['feeder-limit'] = math.ceil(info[2] / max_avl_feeder)
|
||||
|
||||
placement_time.append(base_optimizer(machine_index + 1, data, partial_component_data[machine_index],
|
||||
feeder_data=pd.DataFrame(columns=['slot', 'part', 'arg']),
|
||||
method=single_machine_optimizer, hinter=True))
|
||||
@ -86,13 +150,15 @@ def optimizer(pcb_data, component_data, assembly_line_optimizer, single_machine_
|
||||
|
||||
# todo: 不同类型元件的组装时间差异
|
||||
def base_optimizer(machine_index, pcb_data, component_data, feeder_data=None, method='', hinter=False):
|
||||
|
||||
if method == 'cell_division': # 基于元胞分裂的遗传算法
|
||||
component_result, cycle_result, feeder_slot_result = optimizer_celldivision(pcb_data, component_data, False)
|
||||
component_result, cycle_result, feeder_slot_result = optimizer_celldivision(pcb_data, component_data,
|
||||
hinter=False)
|
||||
placement_result, head_sequence = greedy_placement_route_generation(component_data, pcb_data, component_result,
|
||||
cycle_result, feeder_slot_result)
|
||||
elif method == 'feeder_priority': # 基于基座扫描的供料器优先算法
|
||||
elif method == 'feeder_scan': # 基于基座扫描的供料器优先算法
|
||||
# 第1步:分配供料器位置
|
||||
nozzle_pattern = feeder_allocate(component_data, pcb_data, feeder_data, False)
|
||||
nozzle_pattern = feeder_allocate(component_data, pcb_data, feeder_data, figure=False)
|
||||
# 第2步:扫描供料器基座,确定元件拾取的先后顺序
|
||||
component_result, cycle_result, feeder_slot_result = feeder_base_scan(component_data, pcb_data, feeder_data,
|
||||
nozzle_pattern)
|
||||
@ -105,25 +171,26 @@ def base_optimizer(machine_index, pcb_data, component_data, feeder_data=None, me
|
||||
|
||||
elif method == 'hybrid_genetic': # 基于拾取组的混合遗传算法
|
||||
component_result, cycle_result, feeder_slot_result, placement_result, head_sequence = optimizer_hybrid_genetic(
|
||||
pcb_data, component_data, False)
|
||||
pcb_data, component_data, hinter=False)
|
||||
|
||||
elif method == 'aggregation': # 基于batch-level的整数规划 + 启发式算法
|
||||
component_result, cycle_result, feeder_slot_result, placement_result, head_sequence = optimizer_aggregation(
|
||||
component_data, pcb_data)
|
||||
elif method == 'scan_based':
|
||||
component_result, cycle_result, feeder_slot_result, placement_result, head_sequence = optimizer_scanbased(
|
||||
component_data, pcb_data, False)
|
||||
elif method == 'genetic_scanning':
|
||||
component_result, cycle_result, feeder_slot_result, placement_result, head_sequence = optimizer_genetic_scanning(
|
||||
component_data, pcb_data, hinter=False)
|
||||
else:
|
||||
raise 'method is not existed'
|
||||
|
||||
if hinter:
|
||||
optimization_assign_result(component_data, pcb_data, component_result, cycle_result, feeder_slot_result,
|
||||
nozzle_hinter=False, component_hinter=False, feeder_hinter=False)
|
||||
nozzle_hinter=True, component_hinter=False, feeder_hinter=False)
|
||||
|
||||
print('----- Placement machine ' + str(machine_index) + ' ----- ')
|
||||
print('-Cycle counter: {}'.format(sum(cycle_result)))
|
||||
|
||||
total_nozzle_change_counter, total_pick_counter = 0, 0
|
||||
total_pick_movement = 0
|
||||
assigned_nozzle = ['' if idx == -1 else component_data.loc[idx]['nz'] for idx in component_result[0]]
|
||||
|
||||
for cycle in range(len(cycle_result)):
|
||||
@ -141,25 +208,31 @@ def base_optimizer(machine_index, pcb_data, component_data, feeder_data=None, me
|
||||
pick_slot.add(feeder_slot_result[cycle][head] - head * interval_ratio)
|
||||
total_pick_counter += len(pick_slot) * cycle_result[cycle]
|
||||
|
||||
pick_slot = list(pick_slot)
|
||||
pick_slot.sort()
|
||||
for idx in range(len(pick_slot) - 1):
|
||||
total_pick_movement += abs(pick_slot[idx+1] - pick_slot[idx])
|
||||
|
||||
print('-Nozzle change counter: {}'.format(total_nozzle_change_counter))
|
||||
print('-Pick operation counter: {}'.format(total_pick_counter))
|
||||
print('-Pick movement: {}'.format(total_pick_movement))
|
||||
print('------------------------------ ')
|
||||
|
||||
# 估算贴装用时
|
||||
return placement_time_estimate(component_data, pcb_data, component_result, cycle_result, feeder_slot_result,
|
||||
placement_result, head_sequence, False)
|
||||
placement_result, head_sequence, hinter=False)
|
||||
|
||||
|
||||
@timer_wrapper
|
||||
def main():
|
||||
# warnings.simplefilter('ignore')
|
||||
# 参数解析
|
||||
parser = argparse.ArgumentParser(description='assembly line optimizer implementation')
|
||||
parser.add_argument('--filename', default='PCB1 - FL19-30W.txt', type=str, help='load pcb data')
|
||||
parser.add_argument('--filename', default='PCB.txt', type=str, help='load pcb data')
|
||||
parser.add_argument('--auto_register', default=1, type=int, help='register the component according the pcb data')
|
||||
parser.add_argument('--base_optimizer', default='feeder_priority', type=str,
|
||||
help='base optimizer for single machine')
|
||||
parser.add_argument('--assembly_optimizer', default='genetic', type=str, help='optimizer for PCB Assembly Line')
|
||||
parser.add_argument('--feeder_limit', default=2, type=int,
|
||||
parser.add_argument('--base_optimizer', default='feeder_scan', type=str, help='base optimizer for single machine')
|
||||
parser.add_argument('--assembly_optimizer', default='heuristic', type=str, help='optimizer for PCB Assembly Line')
|
||||
parser.add_argument('--feeder_limit', default=1, type=int,
|
||||
help='the upper feeder limit for each type of component')
|
||||
params = parser.parse_args()
|
||||
|
||||
|
@ -1,3 +1,4 @@
|
||||
# implementation of <<An integrated allocation method for the PCB assembly line balancing problem with nozzle changes>>
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
from base_optimizer.optimizer_common import *
|
||||
@ -5,10 +6,9 @@ from base_optimizer.optimizer_common import *
|
||||
|
||||
def selective_initialization(component_points, component_feeders, population_size):
|
||||
population = [] # population initialization
|
||||
|
||||
for _ in range(population_size):
|
||||
individual = []
|
||||
for part_index, points in component_points.items():
|
||||
for part_index, points in component_points:
|
||||
if points == 0:
|
||||
continue
|
||||
# 可用机器数
|
||||
@ -50,7 +50,7 @@ def selective_crossover(component_points, component_feeders, mother, father, non
|
||||
one_counter, feasible_cut_line = 0, []
|
||||
|
||||
idx = 0
|
||||
for part_index, points in component_points.items():
|
||||
for part_index, points in component_points:
|
||||
one_counter = 0
|
||||
|
||||
idx_, mother_cut_line, father_cut_line = 0, [-1], [-1]
|
||||
@ -136,7 +136,7 @@ def cal_individual_val(component_points, component_nozzle, individual):
|
||||
machine_component_points = [[] for _ in range(max_machine_index)]
|
||||
|
||||
# decode the component allocation
|
||||
for points in component_points.values():
|
||||
for _, points in component_points:
|
||||
component_gene = individual[idx: idx + points + max_machine_index - 1]
|
||||
machine_idx, component_counter = 0, 0
|
||||
for gene in component_gene:
|
||||
@ -206,6 +206,7 @@ def assemblyline_optimizer_genetic(pcb_data, component_data):
|
||||
# crossover rate & mutation rate: 80% & 10%
|
||||
# population size: 200
|
||||
# the number of generation: 500
|
||||
np.random.seed(0)
|
||||
crossover_rate, mutation_rate = 0.8, 0.1
|
||||
population_size, n_generations = 200, 500
|
||||
|
||||
@ -219,6 +220,8 @@ def assemblyline_optimizer_genetic(pcb_data, component_data):
|
||||
component_feeders[part_index] = component_data.loc[part_index]['feeder-limit']
|
||||
component_nozzle[part_index] = nozzle
|
||||
|
||||
component_points = sorted(component_points.items(), key=lambda x: x[0]) # 决定染色体排列顺序
|
||||
|
||||
# population initialization
|
||||
best_popval = []
|
||||
population = selective_initialization(component_points, component_feeders, population_size)
|
||||
|
@ -1,16 +1,146 @@
|
||||
import math
|
||||
import numpy as np
|
||||
|
||||
from base_optimizer.optimizer_common import *
|
||||
|
||||
|
||||
# TODO: 需要考虑贴装点分布位置的限制
|
||||
def assembly_time_estimator(pcb_data, component_data, assignment):
|
||||
return 0
|
||||
# TODO: consider with the PCB placement topology
|
||||
def assembly_time_estimator(component_points, component_feeders, component_nozzle, assignment_points):
|
||||
# todo: how to deal with nozzle change
|
||||
n_cycle, n_nz_change, n_gang_pick = 0, 0, 0
|
||||
|
||||
nozzle_heads, nozzle_points = defaultdict(int), defaultdict(int)
|
||||
for idx, points in enumerate(assignment_points):
|
||||
if points == 0:
|
||||
continue
|
||||
nozzle_points[component_nozzle[idx]] += points
|
||||
nozzle_heads[component_nozzle[idx]] = 1
|
||||
|
||||
while sum(nozzle_heads.values()) != max_head_index:
|
||||
max_cycle_nozzle = None
|
||||
|
||||
for nozzle, head_num in nozzle_heads.items():
|
||||
if max_cycle_nozzle is None or nozzle_points[nozzle] / head_num > nozzle_points[max_cycle_nozzle] / \
|
||||
nozzle_heads[max_cycle_nozzle]:
|
||||
max_cycle_nozzle = nozzle
|
||||
|
||||
assert max_cycle_nozzle is not None
|
||||
nozzle_heads[max_cycle_nozzle] += 1
|
||||
|
||||
n_cycle = max(map(lambda x: math.ceil(nozzle_points[x[0]] / x[1]), nozzle_heads.items()))
|
||||
|
||||
# calculate the number of simultaneous pickup
|
||||
head_index, nozzle_cycle = 0, [[] for _ in range(max_head_index)]
|
||||
for nozzle, heads in nozzle_heads.items():
|
||||
head_index_cpy, points = head_index, nozzle_points[nozzle]
|
||||
for _ in range(heads):
|
||||
nozzle_cycle[head_index].append([nozzle, points // heads])
|
||||
head_index += 1
|
||||
|
||||
points %= heads
|
||||
while points:
|
||||
nozzle_cycle[head_index_cpy][1] += 1
|
||||
points -= 1
|
||||
head_index_cpy += 1
|
||||
|
||||
# nozzle_cycle_index = [0 for _ in range(max_head_index)]
|
||||
return n_cycle, n_nz_change, n_gang_pick
|
||||
|
||||
|
||||
def assemblyline_optimizer_heuristic(pcb_data, component_data):
|
||||
assignment_result = []
|
||||
# the number of placement points, the number of available feeders, and nozzle type of component respectively
|
||||
component_number = len(component_data)
|
||||
|
||||
component_points = [0 for _ in range(component_number)]
|
||||
component_feeders = [0 for _ in range(component_number)]
|
||||
component_nozzle = [0 for _ in range(component_number)]
|
||||
component_part = [0 for _ in range(component_number)]
|
||||
|
||||
# for machine_index in range(max_machine_index):
|
||||
# assembly_time_estimator(pcb_data, component_data, assignment_result[machine_index])
|
||||
nozzle_points = defaultdict(int) # the number of placements of nozzle
|
||||
|
||||
for _, data in pcb_data.iterrows():
|
||||
part_index = component_data[component_data['part'] == data['part']].index.tolist()[0]
|
||||
nozzle = component_data.loc[part_index]['nz']
|
||||
|
||||
component_points[part_index] += 1
|
||||
component_feeders[part_index] = component_data.loc[part_index]['feeder-limit']
|
||||
# component_feeders[part_index] = math.ceil(component_data.loc[part_index]['feeder-limit'] / max_feeder_limit)
|
||||
component_nozzle[part_index] = nozzle
|
||||
component_part[part_index] = data['part']
|
||||
|
||||
nozzle_points[nozzle] += 1
|
||||
|
||||
# first step: generate the initial solution with equalized workload
|
||||
assignment_result = [[0 for _ in range(len(component_points))] for _ in range(max_machine_index)]
|
||||
assignment_points = [0 for _ in range(max_machine_index)]
|
||||
|
||||
weighted_points = list(
|
||||
map(lambda x: x[1] + 1e-5 * nozzle_points[component_nozzle[x[0]]], enumerate(component_points)))
|
||||
|
||||
for part_index in np.argsort(weighted_points):
|
||||
if (total_points := component_points[part_index]) == 0: # total placements for each component type
|
||||
continue
|
||||
machine_set = []
|
||||
|
||||
# define the machine that assigning placement points (considering the feeder limitation)
|
||||
for machine_index in np.argsort(assignment_points):
|
||||
if len(machine_set) >= component_points[part_index] or len(machine_set) >= component_feeders[part_index]:
|
||||
break
|
||||
machine_set.append(machine_index)
|
||||
|
||||
# Allocation of mounting points to available machines according to the principle of equality
|
||||
while total_points:
|
||||
assign_machine = list(filter(lambda x: assignment_points[x] == min(assignment_points), machine_set))
|
||||
|
||||
if len(assign_machine) == len(machine_set):
|
||||
# averagely assign point to all available machines
|
||||
points = total_points // len(assign_machine)
|
||||
for machine_index in machine_set:
|
||||
assignment_points[machine_index] += points
|
||||
assignment_result[machine_index][part_index] += points
|
||||
|
||||
total_points -= points * len(assign_machine)
|
||||
for machine_index in machine_set:
|
||||
if total_points == 0:
|
||||
break
|
||||
assignment_points[machine_index] += 1
|
||||
assignment_result[machine_index][part_index] += 1
|
||||
total_points -= 1
|
||||
else:
|
||||
# assigning placements to make up for the gap between the least and the second least
|
||||
second_least_machine, second_least_machine_points = -1, max(assignment_points) + 1
|
||||
for idx in machine_set:
|
||||
if assignment_points[idx] < second_least_machine_points and assignment_points[idx] != min(
|
||||
assignment_points):
|
||||
second_least_machine_points = assignment_points[idx]
|
||||
second_least_machine = idx
|
||||
|
||||
assert second_least_machine != -1
|
||||
|
||||
if len(assign_machine) * (second_least_machine_points - min(assignment_points)) < total_points:
|
||||
min_points = min(assignment_points)
|
||||
total_points -= len(assign_machine) * (second_least_machine_points - min_points)
|
||||
for machine_index in assign_machine:
|
||||
assignment_points[machine_index] += (second_least_machine_points - min_points)
|
||||
assignment_result[machine_index][part_index] += (
|
||||
second_least_machine_points - min_points)
|
||||
else:
|
||||
points = total_points // len(assign_machine)
|
||||
for machine_index in assign_machine:
|
||||
assignment_points[machine_index] += points
|
||||
assignment_result[machine_index][part_index] += points
|
||||
|
||||
total_points -= points * len(assign_machine)
|
||||
for machine_index in assign_machine:
|
||||
if total_points == 0:
|
||||
break
|
||||
assignment_points[machine_index] += 1
|
||||
assignment_result[machine_index][part_index] += 1
|
||||
total_points -= 1
|
||||
|
||||
# todo: implementation
|
||||
|
||||
# second step: estimate the assembly time for each machine
|
||||
# third step: adjust the assignment results to reduce maximal assembly time among all machines
|
||||
|
||||
return assignment_result
|
||||
|
@ -362,14 +362,24 @@ def optimization_assign_result(component_data, pcb_data, component_result, cycle
|
||||
|
||||
nozzle_assign = pd.DataFrame(columns=columns)
|
||||
for cycle, components in enumerate(component_result):
|
||||
nozzle_assign.loc[cycle, 'cycle'] = cycle_result[cycle]
|
||||
nozzle_assign_row = len(nozzle_assign)
|
||||
nozzle_assign.loc[nozzle_assign_row, 'cycle'] = cycle_result[cycle]
|
||||
|
||||
for head in range(max_head_index):
|
||||
index = component_result[cycle][head]
|
||||
if index == -1:
|
||||
nozzle_assign.loc[cycle, 'H{}'.format(head + 1)] = ''
|
||||
nozzle_assign.loc[nozzle_assign_row, 'H{}'.format(head + 1)] = ''
|
||||
else:
|
||||
nozzle = component_data.loc[index]['nz']
|
||||
nozzle_assign.loc[cycle, 'H{}'.format(head + 1)] = nozzle
|
||||
nozzle_assign.loc[nozzle_assign_row, 'H{}'.format(head + 1)] = nozzle
|
||||
|
||||
for head in range(max_head_index):
|
||||
if nozzle_assign_row == 0 or nozzle_assign.loc[nozzle_assign_row - 1, 'H{}'.format(head + 1)] != \
|
||||
nozzle_assign.loc[nozzle_assign_row, 'H{}'.format(head + 1)]:
|
||||
break
|
||||
else:
|
||||
nozzle_assign.loc[nozzle_assign_row - 1, 'cycle'] += nozzle_assign.loc[nozzle_assign_row, 'cycle']
|
||||
nozzle_assign.drop([len(nozzle_assign) - 1], inplace=True)
|
||||
|
||||
print(nozzle_assign)
|
||||
print('')
|
||||
@ -449,11 +459,7 @@ def placement_time_estimate(component_data, pcb_data, component_result, cycle_re
|
||||
warnings.warn(info, UserWarning)
|
||||
return 0.
|
||||
|
||||
t_pick, t_place = .078, .051 # 贴装/拾取用时
|
||||
t_nozzle_put, t_nozzle_pick = 0.9, 0.75 # 装卸吸嘴用时
|
||||
t_fix_camera_check = 0.12 # 固定相机检测时间
|
||||
|
||||
total_moving_time = .0 # 总移动用时
|
||||
total_pickup_time, total_round_time, total_place_time = .0, .0, 0 # 拾取用时、往返用时、贴装用时
|
||||
total_operation_time = .0 # 操作用时
|
||||
total_nozzle_change_counter = 0 # 总吸嘴更换次数
|
||||
total_pick_counter = 0 # 总拾取次数
|
||||
@ -492,8 +498,10 @@ def placement_time_estimate(component_data, pcb_data, component_result, cycle_re
|
||||
# ANC处进行吸嘴更换
|
||||
if nozzle_pick_counter + nozzle_put_counter > 0:
|
||||
next_pos = anc_marker_pos
|
||||
total_moving_time += max(axis_moving_time(cur_pos[0] - next_pos[0], 0),
|
||||
move_time = max(axis_moving_time(cur_pos[0] - next_pos[0], 0),
|
||||
axis_moving_time(cur_pos[1] - next_pos[1], 1))
|
||||
total_round_time += move_time
|
||||
|
||||
total_distance += max(abs(cur_pos[0] - next_pos[0]), abs(cur_pos[1] - next_pos[1]))
|
||||
cur_pos = next_pos
|
||||
|
||||
@ -501,15 +509,21 @@ def placement_time_estimate(component_data, pcb_data, component_result, cycle_re
|
||||
pick_slot = sorted(pick_slot, reverse=True)
|
||||
|
||||
# 拾取路径(自右向左)
|
||||
for slot in pick_slot:
|
||||
for idx, slot in enumerate(pick_slot):
|
||||
if slot < max_slot_index // 2:
|
||||
next_pos = [slotf1_pos[0] + slot_interval * (slot - 1), slotf1_pos[1]]
|
||||
else:
|
||||
next_pos = [slotr1_pos[0] - slot_interval * (max_slot_index - slot - 1), slotr1_pos[1]]
|
||||
total_operation_time += t_pick
|
||||
total_pick_counter += 1
|
||||
total_moving_time += max(axis_moving_time(cur_pos[0] - next_pos[0], 0),
|
||||
|
||||
move_time = max(axis_moving_time(cur_pos[0] - next_pos[0], 0),
|
||||
axis_moving_time(cur_pos[1] - next_pos[1], 1))
|
||||
if idx == 0:
|
||||
total_round_time += move_time
|
||||
else:
|
||||
total_pickup_time += move_time
|
||||
|
||||
total_distance += max(abs(cur_pos[0] - next_pos[0]), abs(cur_pos[1] - next_pos[1]))
|
||||
if slot != pick_slot[0]:
|
||||
total_pick_distance += max(abs(cur_pos[0] - next_pos[0]), abs(cur_pos[1] - next_pos[1]))
|
||||
@ -522,8 +536,10 @@ def placement_time_estimate(component_data, pcb_data, component_result, cycle_re
|
||||
camera = component_data.loc[component_result[cycle_set][head]]['camera']
|
||||
if camera == '固定相机':
|
||||
next_pos = [fix_camera_pos[0] - head * head_interval, fix_camera_pos[1]]
|
||||
total_moving_time += max(axis_moving_time(cur_pos[0] - next_pos[0], 0),
|
||||
move_time = max(axis_moving_time(cur_pos[0] - next_pos[0], 0),
|
||||
axis_moving_time(cur_pos[1] - next_pos[1], 1))
|
||||
total_round_time += move_time
|
||||
|
||||
total_distance += max(abs(cur_pos[0] - next_pos[0]), abs(cur_pos[1] - next_pos[1]))
|
||||
total_operation_time += t_fix_camera_check
|
||||
cur_pos = next_pos
|
||||
@ -545,22 +561,26 @@ def placement_time_estimate(component_data, pcb_data, component_result, cycle_re
|
||||
# 考虑R轴预旋转,补偿同轴角度转动带来的额外贴装用时
|
||||
total_operation_time += head_rotary_time(mount_angle[0]) # 补偿角度转动带来的额外贴装用时
|
||||
total_operation_time += t_nozzle_put * nozzle_put_counter + t_nozzle_pick * nozzle_pick_counter
|
||||
for pos in mount_pos:
|
||||
for idx, pos in enumerate(mount_pos):
|
||||
total_operation_time += t_place
|
||||
total_moving_time += max(axis_moving_time(cur_pos[0] - pos[0], 0),
|
||||
axis_moving_time(cur_pos[1] - pos[1], 1))
|
||||
move_time = max(axis_moving_time(cur_pos[0] - pos[0], 0), axis_moving_time(cur_pos[1] - pos[1], 1))
|
||||
if idx == 0:
|
||||
total_round_time += move_time
|
||||
else:
|
||||
total_place_time += move_time
|
||||
|
||||
total_distance += max(abs(cur_pos[0] - pos[0]), abs(cur_pos[1] - pos[1]))
|
||||
cur_pos = pos
|
||||
|
||||
total_nozzle_change_counter += nozzle_put_counter + nozzle_pick_counter
|
||||
|
||||
total_time = total_moving_time + total_operation_time
|
||||
total_time = total_pickup_time + total_round_time + total_place_time + total_operation_time
|
||||
minutes, seconds = int(total_time // 60), int(total_time) % 60
|
||||
millisecond = int((total_time - minutes * 60 - seconds) * 60)
|
||||
|
||||
if hinter:
|
||||
optimization_assign_result(component_data, pcb_data, component_result, cycle_result, feeder_slot_result,
|
||||
nozzle_hinter=True, component_hinter=True, feeder_hinter=True)
|
||||
nozzle_hinter=False, component_hinter=False, feeder_hinter=False)
|
||||
|
||||
print('-Cycle counter: {}'.format(sum(cycle_result)))
|
||||
print('-Nozzle change counter: {}'.format(total_nozzle_change_counter // 2))
|
||||
@ -570,7 +590,9 @@ def placement_time_estimate(component_data, pcb_data, component_result, cycle_re
|
||||
print('-Expected picking tour length: {} mm'.format(total_pick_distance))
|
||||
print('-Expected total tour length: {} mm'.format(total_distance))
|
||||
|
||||
print('-Expected total moving time: {} s'.format(total_moving_time))
|
||||
print('-Expected total moving time: {} s with pick: {}, round: {}, place = {}'.format(
|
||||
total_pickup_time + total_round_time + total_place_time, total_pickup_time, total_round_time,
|
||||
total_place_time))
|
||||
print('-Expected total operation time: {} s'.format(total_operation_time))
|
||||
|
||||
if minutes > 0:
|
||||
|
Reference in New Issue
Block a user