修改启发式算法和遗传算法实现

This commit is contained in:
2023-07-20 20:02:43 +08:00
parent 6e56f796f0
commit 315b747b19
10 changed files with 368 additions and 461 deletions

View File

@ -1,24 +1,34 @@
import copy
import math
import matplotlib.pyplot as plt
import pandas as pd
from base_optimizer.optimizer_aggregation import *
from base_optimizer.optimizer_scanbased import *
from base_optimizer.optimizer_celldivision import *
from base_optimizer.optimizer_hybridgenetic import *
from base_optimizer.optimizer_feederpriority import *
from dataloader import *
from optimizer_genetic import *
from optimizer_heuristic import *
def optimizer(pcb_data, component_data, assembly_line_optimizer, single_machine_optimizer):
assignment_result = assemblyline_optimizer_genetic(pcb_data, component_data)
def deviation(data):
assert len(data) > 0
average, variance = sum(data) / len(data), 0
for v in data:
variance += (v - average) ** 2
return variance / len(data)
# assignment_result = [[0, 0, 0, 0, 216, 0, 0], [0, 0, 0, 0, 216, 0, 0], [36, 24, 12, 12, 0, 36, 12]]
def optimizer(pcb_data, component_data, assembly_line_optimizer, single_machine_optimizer):
# todo: 由于吸嘴更换更因素的存在在处理PCB8数据时遗传算法因在负载均衡过程中对这一因素进行了考虑性能更优
# assignment_result = assemblyline_optimizer_heuristic(pcb_data, component_data)
assignment_result = assemblyline_optimizer_genetic(pcb_data, component_data)
print(assignment_result)
assignment_result_cpy = copy.deepcopy(assignment_result)
placement_points, placement_time = [], []
partial_pcb_data, partial_component_data = defaultdict(pd.DataFrame), defaultdict(pd.DataFrame)
for machine_index in range(max_machine_index):
@ -26,7 +36,9 @@ def optimizer(pcb_data, component_data, assembly_line_optimizer, single_machine_
partial_component_data[machine_index] = component_data.copy(deep=True)
placement_points.append(sum(assignment_result[machine_index]))
# averagely assign available feeder
assert sum(placement_points) == len(pcb_data)
# === averagely assign available feeder ===
for part_index, data in component_data.iterrows():
feeder_limit = data['feeder-limit']
feeder_points = [assignment_result[machine_index][part_index] for machine_index in range(max_machine_index)]
@ -49,11 +61,14 @@ def optimizer(pcb_data, component_data, assembly_line_optimizer, single_machine_
partial_component_data[machine_index].loc[part_index]['feeder-limit'] += 1
feeder_limit -= 1
for machine_index in range(max_machine_index):
if feeder_points[machine_index] > 0:
assert partial_component_data[machine_index].loc[part_index]['feeder-limit'] > 0
# === assign placements ===
component_machine_index = [0 for _ in range(len(component_data))]
pcb_data = pcb_data.sort_values(by="x", ascending=False)
for _, data in pcb_data.iterrows():
part = data['part']
part_index = component_data[component_data['part'] == part].index.tolist()[0]
part_index = component_data[component_data['part'] == data['part']].index.tolist()[0]
while True:
machine_index = component_machine_index[part_index]
if assignment_result[machine_index][part_index] == 0:
@ -64,11 +79,60 @@ def optimizer(pcb_data, component_data, assembly_line_optimizer, single_machine_
assignment_result[machine_index][part_index] -= 1
partial_pcb_data[machine_index] = pd.concat([partial_pcb_data[machine_index], pd.DataFrame(data).T])
# === adjust the number of available feeders for single optimization separately ===
for machine_index, data in partial_pcb_data.items():
data = data.reset_index(drop=True)
if len(data) == 0:
continue
part_info = [] # part info list(part index, part points, available feeder-num, upper feeder-num)
for part_index, cp_data in partial_component_data[machine_index].iterrows():
if assignment_result_cpy[machine_index][part_index]:
part_info.append(
[part_index, assignment_result_cpy[machine_index][part_index], 1, cp_data['feeder-limit']])
part_info = sorted(part_info, key=lambda x: x[1], reverse=True)
start_index, end_index = 0, min(max_head_index - 1, len(part_info) - 1)
while start_index < len(part_info):
assign_part_point, assign_part_index = [], []
for idx_ in range(start_index, end_index + 1):
for _ in range(part_info[idx_][2]):
assign_part_point.append(part_info[idx_][1] / part_info[idx_][2])
assign_part_index.append(idx_)
variance = deviation(assign_part_point)
while start_index != end_index:
part_info_index = assign_part_index[np.argmax(assign_part_point)]
if part_info[part_info_index][2] < part_info[part_info_index][3]: # 供料器数目上限的限制
part_info[part_info_index][2] += 1
end_index -= 1
new_assign_part_point, new_assign_part_index = [], []
for idx_ in range(start_index, end_index + 1):
for _ in range(part_info[idx_][2]):
new_assign_part_point.append(part_info[idx_][1] / part_info[idx_][2])
new_assign_part_index.append(idx_)
new_variance = deviation(new_assign_part_point)
if variance < new_variance:
part_info[part_info_index][2] -= 1
end_index += 1
break
variance = new_variance
assign_part_index, assign_part_point = new_assign_part_index, new_assign_part_point
else:
break
start_index = end_index + 1
end_index = min(start_index + max_head_index - 1, len(part_info) - 1)
# update available feeder number
max_avl_feeder = max(part_info, key=lambda x: x[2])[2]
for info in part_info:
partial_component_data[machine_index].loc[info[0]]['feeder-limit'] = math.ceil(info[2] / max_avl_feeder)
placement_time.append(base_optimizer(machine_index + 1, data, partial_component_data[machine_index],
feeder_data=pd.DataFrame(columns=['slot', 'part', 'arg']),
method=single_machine_optimizer, hinter=True))
@ -86,13 +150,15 @@ def optimizer(pcb_data, component_data, assembly_line_optimizer, single_machine_
# todo: 不同类型元件的组装时间差异
def base_optimizer(machine_index, pcb_data, component_data, feeder_data=None, method='', hinter=False):
if method == 'cell_division': # 基于元胞分裂的遗传算法
component_result, cycle_result, feeder_slot_result = optimizer_celldivision(pcb_data, component_data, False)
component_result, cycle_result, feeder_slot_result = optimizer_celldivision(pcb_data, component_data,
hinter=False)
placement_result, head_sequence = greedy_placement_route_generation(component_data, pcb_data, component_result,
cycle_result, feeder_slot_result)
elif method == 'feeder_priority': # 基于基座扫描的供料器优先算法
elif method == 'feeder_scan': # 基于基座扫描的供料器优先算法
# 第1步分配供料器位置
nozzle_pattern = feeder_allocate(component_data, pcb_data, feeder_data, False)
nozzle_pattern = feeder_allocate(component_data, pcb_data, feeder_data, figure=False)
# 第2步扫描供料器基座确定元件拾取的先后顺序
component_result, cycle_result, feeder_slot_result = feeder_base_scan(component_data, pcb_data, feeder_data,
nozzle_pattern)
@ -105,25 +171,26 @@ def base_optimizer(machine_index, pcb_data, component_data, feeder_data=None, me
elif method == 'hybrid_genetic': # 基于拾取组的混合遗传算法
component_result, cycle_result, feeder_slot_result, placement_result, head_sequence = optimizer_hybrid_genetic(
pcb_data, component_data, False)
pcb_data, component_data, hinter=False)
elif method == 'aggregation': # 基于batch-level的整数规划 + 启发式算法
component_result, cycle_result, feeder_slot_result, placement_result, head_sequence = optimizer_aggregation(
component_data, pcb_data)
elif method == 'scan_based':
component_result, cycle_result, feeder_slot_result, placement_result, head_sequence = optimizer_scanbased(
component_data, pcb_data, False)
elif method == 'genetic_scanning':
component_result, cycle_result, feeder_slot_result, placement_result, head_sequence = optimizer_genetic_scanning(
component_data, pcb_data, hinter=False)
else:
raise 'method is not existed'
if hinter:
optimization_assign_result(component_data, pcb_data, component_result, cycle_result, feeder_slot_result,
nozzle_hinter=False, component_hinter=False, feeder_hinter=False)
nozzle_hinter=True, component_hinter=False, feeder_hinter=False)
print('----- Placement machine ' + str(machine_index) + ' ----- ')
print('-Cycle counter: {}'.format(sum(cycle_result)))
total_nozzle_change_counter, total_pick_counter = 0, 0
total_pick_movement = 0
assigned_nozzle = ['' if idx == -1 else component_data.loc[idx]['nz'] for idx in component_result[0]]
for cycle in range(len(cycle_result)):
@ -141,25 +208,31 @@ def base_optimizer(machine_index, pcb_data, component_data, feeder_data=None, me
pick_slot.add(feeder_slot_result[cycle][head] - head * interval_ratio)
total_pick_counter += len(pick_slot) * cycle_result[cycle]
pick_slot = list(pick_slot)
pick_slot.sort()
for idx in range(len(pick_slot) - 1):
total_pick_movement += abs(pick_slot[idx+1] - pick_slot[idx])
print('-Nozzle change counter: {}'.format(total_nozzle_change_counter))
print('-Pick operation counter: {}'.format(total_pick_counter))
print('-Pick movement: {}'.format(total_pick_movement))
print('------------------------------ ')
# 估算贴装用时
return placement_time_estimate(component_data, pcb_data, component_result, cycle_result, feeder_slot_result,
placement_result, head_sequence, False)
placement_result, head_sequence, hinter=False)
@timer_wrapper
def main():
# warnings.simplefilter('ignore')
# 参数解析
parser = argparse.ArgumentParser(description='assembly line optimizer implementation')
parser.add_argument('--filename', default='PCB1 - FL19-30W.txt', type=str, help='load pcb data')
parser.add_argument('--filename', default='PCB.txt', type=str, help='load pcb data')
parser.add_argument('--auto_register', default=1, type=int, help='register the component according the pcb data')
parser.add_argument('--base_optimizer', default='feeder_priority', type=str,
help='base optimizer for single machine')
parser.add_argument('--assembly_optimizer', default='genetic', type=str, help='optimizer for PCB Assembly Line')
parser.add_argument('--feeder_limit', default=2, type=int,
parser.add_argument('--base_optimizer', default='feeder_scan', type=str, help='base optimizer for single machine')
parser.add_argument('--assembly_optimizer', default='heuristic', type=str, help='optimizer for PCB Assembly Line')
parser.add_argument('--feeder_limit', default=1, type=int,
help='the upper feeder limit for each type of component')
params = parser.parse_args()