增加单机优化方法

This commit is contained in:
2023-03-15 21:14:56 +08:00
parent 6b031dc486
commit 13c1b18e1d
16 changed files with 3320 additions and 893 deletions

View File

@ -1,305 +1,166 @@
import math
import random
import matplotlib.pyplot as plt
import pandas as pd
from base_optimizer.optimizer_aggregation import *
from base_optimizer.optimizer_scanbased import *
from base_optimizer.optimizer_celldivision import *
from base_optimizer.optimizer_hybridgenetic import *
from base_optimizer.optimizer_feederpriority import *
from optimizer_common import *
from dataloader import *
def get_top_k_value(pop_val, k: int):
res = []
pop_val_cpy = copy.deepcopy(pop_val)
pop_val_cpy.sort(reverse=True)
for i in range(min(len(pop_val_cpy), k)):
for j in range(len(pop_val)):
if abs(pop_val_cpy[i] - pop_val[j]) < 1e-9 and j not in res:
res.append(j)
break
return res
from optimizer_genetic import *
from optimizer_heuristic import *
def swap_mutation(component_points, individual):
offspring = individual.copy()
def optimizer(pcb_data, component_data, assembly_line_optimizer, single_machine_optimizer):
assignment_result = assemblyline_optimizer_genetic(pcb_data, component_data)
idx, component_index = 0, random.randint(0, len(component_points) - 1)
for points in component_points.values():
if component_index == 0:
index1 = random.randint(0, points + max_machine_index - 2)
while True:
index2 = random.randint(0, points + max_machine_index - 2)
if index1 != index2 and offspring[idx + index1] != offspring[idx + index2]:
break
offspring[idx + index1], offspring[idx + index2] = offspring[idx + index2], offspring[idx + index1]
break
# assignment_result = [[0, 0, 0, 0, 216, 0, 0], [0, 0, 0, 0, 216, 0, 0], [36, 24, 12, 12, 0, 36, 12]]
placement_points, placement_time = [], []
partial_pcb_data, partial_component_data = defaultdict(pd.DataFrame), defaultdict(pd.DataFrame)
for machine_index in range(max_machine_index):
partial_pcb_data[machine_index] = pd.DataFrame(columns=pcb_data.columns)
partial_component_data[machine_index] = component_data.copy(deep=True)
placement_points.append(sum(assignment_result[machine_index]))
component_index -= 1
idx += (points + max_machine_index - 1)
# averagely assign available feeder
for part_index, data in component_data.iterrows():
feeder_limit = data['feeder-limit']
feeder_points = [assignment_result[machine_index][part_index] for machine_index in range(max_machine_index)]
return offspring
def roulette_wheel_selection(pop_eval):
# Roulette wheel
random_val = np.random.random()
for idx, val in enumerate(pop_eval):
random_val -= val
if random_val <= 0:
return idx
return len(pop_eval) - 1
def random_selective(data, possibility): # 依概率选择随机数
assert len(data) == len(possibility) and len(data) > 0
sum_val = sum(possibility)
possibility = [p / sum_val for p in possibility]
random_val = random.random()
for idx, val in enumerate(possibility):
random_val -= val
if random_val <= 0:
break
return data[idx]
def selective_initialization(component_points, population_size):
population = [] # population initialization
for _ in range(population_size):
individual = []
for points in component_points.values():
if points == 0:
for machine_index in range(max_machine_index):
if feeder_points[machine_index] == 0:
continue
avl_machine_num = random.randint(1, min(max_machine_index, points)) # 可用机器数
selective_possibility = []
for p in range(1, avl_machine_num + 1):
selective_possibility.append(pow(2, avl_machine_num - p + 1))
arg_feeder = max(math.floor(feeder_points[machine_index] / sum(feeder_points) * data['feeder-limit']), 1)
sel_machine_num = random_selective([p + 1 for p in range(avl_machine_num)], selective_possibility) # 选择的机器数
sel_machine_set = random.sample([p for p in range(avl_machine_num)], sel_machine_num)
partial_component_data[machine_index].loc[part_index]['feeder-limit'] = arg_feeder
feeder_limit -= arg_feeder
sel_machine_points = [1 for _ in range(sel_machine_num)]
for p in range(sel_machine_num - 1):
if points == sum(sel_machine_points):
break
assign_points = random.randint(1, points - sum(sel_machine_points))
sel_machine_points[p] += assign_points
for machine_index in range(max_machine_index):
if feeder_limit <= 0:
break
if sum(sel_machine_points) < points:
sel_machine_points[-1] += (points - sum(sel_machine_points))
if feeder_points[machine_index] == 0:
continue
partial_component_data[machine_index].loc[part_index]['feeder-limit'] += 1
feeder_limit -= 1
# code component allocation into chromosome
for p in range(max_machine_index):
if p in sel_machine_set:
individual += [0 for _ in range(sel_machine_points[0])]
sel_machine_points.pop(0)
individual.append(1)
individual.pop(-1)
population.append(individual)
return population
def selective_crossover(mother, father, non_decelerating=True):
assert len(mother) == len(father)
offspring1, offspring2 = mother.copy(), father.copy()
one_counter, feasible_cutline = 0, []
for idx in range(len(mother) - 1):
if mother[idx] == 1:
one_counter += 1
if father[idx] == 1:
one_counter -= 1
# first constraint: the total number of “1”s (the number of partitions) in the chromosome is unchanged
if one_counter != 0 or idx == 0 or idx == len(mother) - 2:
continue
# the selected cutline should guarantee there are the same or a larger number unassigned machine
# for each component type
n_bro, n_new = 0, 0
if mother[idx] and mother[idx + 1]:
n_bro += 1
if father[idx] and father[idx + 1]:
n_bro += 1
if mother[idx] and father[idx + 1]:
n_new += 1
if father[idx] and mother[idx + 1]:
n_new += 1
# non_decelerating or accelerating crossover
if (non_decelerating and n_bro <= n_new) or n_bro < n_new:
feasible_cutline.append(idx)
if len(feasible_cutline) == 0:
return offspring1, offspring2
cutline_idx = feasible_cutline[random.randint(0, len(feasible_cutline) - 1)]
offspring1, offspring2 = mother[:cutline_idx + 1] + father[cutline_idx + 1:], father[:cutline_idx + 1] + mother[
cutline_idx + 1:]
return offspring1, offspring2
def cal_individual_val(component_points, component_nozzle, individual):
idx, objective_val = 0, [0]
machine_component_points = [[] for _ in range(max_machine_index)]
# decode the component allocation
for points in component_points.values():
component_gene = individual[idx: idx + points + max_machine_index - 1]
machine_idx, component_counter = 0, 0
for gene in component_gene:
if gene:
machine_component_points[machine_idx].append(component_counter)
machine_idx += 1
component_counter = 0
component_machine_index = [0 for _ in range(len(component_data))]
pcb_data = pcb_data.sort_values(by="x", ascending=False)
for _, data in pcb_data.iterrows():
part = data['part']
part_index = component_data[component_data['part'] == part].index.tolist()[0]
while True:
machine_index = component_machine_index[part_index]
if assignment_result[machine_index][part_index] == 0:
component_machine_index[part_index] += 1
machine_index += 1
else:
component_counter += 1
machine_component_points[-1].append(component_counter)
idx += (points + max_machine_index - 1)
for machine_idx in range(max_machine_index):
nozzle_points = defaultdict(int)
for idx, nozzle in component_nozzle.items():
if component_points[idx] == 0:
continue
nozzle_points[nozzle] += machine_component_points[machine_idx][idx]
machine_points = sum(machine_component_points[machine_idx]) # num of placement points
if machine_points == 0:
continue
ul = math.ceil(len(nozzle_points) * 1.0 / max_head_index) - 1 # num of nozzle set
# assignments of nozzles to heads
wl = 0 # num of workload
total_heads = (1 + ul) * max_head_index - len(nozzle_points)
nozzle_heads = defaultdict(int)
for nozzle in nozzle_points.keys():
nozzle_heads[nozzle] = math.floor(nozzle_points[nozzle] * 1.0 / machine_points * total_heads)
nozzle_heads[nozzle] += 1
total_heads = (1 + ul) * max_head_index
for heads in nozzle_heads.values():
total_heads -= heads
for nozzle in nozzle_heads.keys(): # TODO有利于减少周期的方法
if total_heads == 0:
break
nozzle_heads[nozzle] += 1
total_heads -= 1
assignment_result[machine_index][part_index] -= 1
partial_pcb_data[machine_index] = pd.concat([partial_pcb_data[machine_index], pd.DataFrame(data).T])
# averagely assign placements to heads
heads_placement = []
for nozzle in nozzle_heads.keys():
points = math.floor(nozzle_points[nozzle] / nozzle_heads[nozzle])
for machine_index, data in partial_pcb_data.items():
data = data.reset_index(drop=True)
if len(data) == 0:
continue
heads_placement += [[nozzle, points] for _ in range(nozzle_heads[nozzle])]
nozzle_points[nozzle] -= (nozzle_heads[nozzle] * points)
for idx in range(len(heads_placement) - 1, -1, -1):
if nozzle_points[nozzle] <= 0:
break
nozzle_points[nozzle] -= 1
heads_placement[idx][1] += 1
heads_placement = sorted(heads_placement, key=lambda x: x[1], reverse=True)
placement_time.append(base_optimizer(machine_index + 1, data, partial_component_data[machine_index],
feeder_data=pd.DataFrame(columns=['slot', 'part', 'arg']),
method=single_machine_optimizer, hinter=True))
# every max_head_index heads in the non-decreasing order are grouped together as nozzle set
for idx in range(len(heads_placement) // max_head_index):
wl += heads_placement[idx][1]
objective_val.append(T_pp * machine_points + T_tr * wl + T_nc * ul)
average_time, standard_deviation_time = sum(placement_time) / max_machine_index, 0
for machine_index in range(max_machine_index):
print('assembly time for machine ' + str(machine_index + 1) + ': ' + str(
placement_time[machine_index]) + ' s, ' + 'total placements: ' + str(placement_points[machine_index]))
standard_deviation_time += pow(placement_time[machine_index] - average_time, 2)
standard_deviation_time /= max_machine_index
standard_deviation_time = math.sqrt(standard_deviation_time)
return max(objective_val), machine_component_points
print('finial assembly time: ' + str(max(placement_time)) + 's, standard deviation: ' + str(standard_deviation_time))
@timer_wrapper
def optimizer(pcb_data, component_data):
# basic parameter
# crossover rate & mutation rate: 80% & 10%
# population size: 200
# the number of generation: 500
crossover_rate, mutation_rate = 0.8, 0.1
population_size, n_generations = 200, 500
# todo: 不同类型元件的组装时间差异
def base_optimizer(machine_index, pcb_data, component_data, feeder_data=None, method='', hinter=False):
if method == 'cell_division': # 基于元胞分裂的遗传算法
component_result, cycle_result, feeder_slot_result = optimizer_celldivision(pcb_data, component_data, False)
placement_result, head_sequence = greedy_placement_route_generation(component_data, pcb_data, component_result,
cycle_result, feeder_slot_result)
elif method == 'feeder_priority': # 基于基座扫描的供料器优先算法
# 第1步分配供料器位置
nozzle_pattern = feeder_allocate(component_data, pcb_data, feeder_data, False)
# 第2步扫描供料器基座确定元件拾取的先后顺序
component_result, cycle_result, feeder_slot_result = feeder_base_scan(component_data, pcb_data, feeder_data,
nozzle_pattern)
# the number of placement points and nozzle type of component
component_points, component_nozzle = defaultdict(int), defaultdict(str)
for data in pcb_data.iterrows():
part_index = component_data[component_data['part'] == data[1]['part']].index.tolist()[0]
nozzle = component_data.loc[part_index]['nz']
# 第3步贴装路径规划
placement_result, head_sequence = greedy_placement_route_generation(component_data, pcb_data, component_result,
cycle_result, feeder_slot_result)
# placement_result, head_sequence = beam_search_for_route_generation(component_data, pcb_data, component_result,
# cycle_result, feeder_slot_result)
component_points[part_index] += 1
component_nozzle[part_index] = nozzle
elif method == 'hybrid_genetic': # 基于拾取组的混合遗传算法
component_result, cycle_result, feeder_slot_result, placement_result, head_sequence = optimizer_hybrid_genetic(
pcb_data, component_data, False)
# population initialization
best_popval = []
population = selective_initialization(component_points, population_size)
with tqdm(total=n_generations) as pbar:
pbar.set_description('genetic process for PCB assembly')
elif method == 'aggregation': # 基于batch-level的整数规划 + 启发式算法
component_result, cycle_result, feeder_slot_result, placement_result, head_sequence = optimizer_aggregation(
component_data, pcb_data)
elif method == 'scan_based':
component_result, cycle_result, feeder_slot_result, placement_result, head_sequence = optimizer_scanbased(
component_data, pcb_data, False)
else:
raise 'method is not existed'
new_population, new_pop_val = [], []
for _ in range(n_generations):
# calculate fitness value
pop_val = []
for individual in population:
val, _ = cal_individual_val(component_points, component_nozzle, individual)
pop_val.append(val)
if hinter:
optimization_assign_result(component_data, pcb_data, component_result, cycle_result, feeder_slot_result,
nozzle_hinter=False, component_hinter=False, feeder_hinter=False)
best_popval.append(min(pop_val))
# min-max convert
max_val = max(pop_val)
pop_val = list(map(lambda v: max_val - v, pop_val))
print('----- Placement machine ' + str(machine_index) + ' ----- ')
print('-Cycle counter: {}'.format(sum(cycle_result)))
sum_pop_val = sum(pop_val)
pop_val = [v / sum_pop_val for v in pop_val]
total_nozzle_change_counter, total_pick_counter = 0, 0
assigned_nozzle = ['' if idx == -1 else component_data.loc[idx]['nz'] for idx in component_result[0]]
select_index = get_top_k_value(pop_val, population_size - len(new_pop_val))
population = [population[idx] for idx in select_index]
pop_val = [pop_val[idx] for idx in select_index]
for cycle in range(len(cycle_result)):
pick_slot = set()
for head in range(max_head_index):
if (idx := component_result[cycle][head]) == -1:
continue
population += new_population
for individual in new_population:
val, _ = cal_individual_val(component_points, component_nozzle, individual)
pop_val.append(val)
nozzle = component_data.loc[idx]['nz']
if nozzle != assigned_nozzle[head]:
if assigned_nozzle[head] != '':
total_nozzle_change_counter += 1
assigned_nozzle[head] = nozzle
# crossover and mutation
new_population = []
for pop in range(population_size):
if pop % 2 == 0 and np.random.random() < crossover_rate:
index1 = roulette_wheel_selection(pop_val)
while True:
index2 = roulette_wheel_selection(pop_val)
if index1 != index2:
break
pick_slot.add(feeder_slot_result[cycle][head] - head * interval_ratio)
total_pick_counter += len(pick_slot) * cycle_result[cycle]
offspring1, offspring2 = selective_crossover(population[index1], population[index2])
if np.random.random() < mutation_rate:
offspring1 = swap_mutation(component_points, offspring1)
print('-Nozzle change counter: {}'.format(total_nozzle_change_counter))
print('-Pick operation counter: {}'.format(total_pick_counter))
print('------------------------------ ')
if np.random.random() < mutation_rate:
offspring1 = swap_mutation(component_points, offspring1)
new_population.append(offspring1)
new_population.append(offspring2)
pbar.update(1)
best_individual = population[np.argmin(pop_val)]
val, result = cal_individual_val(component_points, component_nozzle, best_individual)
print(result)
plt.plot(best_popval)
plt.show()
# TODO: 计算实际的PCB整线组装时间
# 估算贴装用时
return placement_time_estimate(component_data, pcb_data, component_result, cycle_result, feeder_slot_result,
placement_result, head_sequence, False)
if __name__ == '__main__':
def main():
# warnings.simplefilter('ignore')
# 参数解析
parser = argparse.ArgumentParser(description='assembly line optimizer implementation')
parser.add_argument('--filename', default='PCB.txt', type=str, help='load pcb data')
parser.add_argument('--filename', default='PCB1 - FL19-30W.txt', type=str, help='load pcb data')
parser.add_argument('--auto_register', default=1, type=int, help='register the component according the pcb data')
parser.add_argument('--base_optimizer', default='feeder_priority', type=str,
help='base optimizer for single machine')
parser.add_argument('--assembly_optimizer', default='genetic', type=str, help='optimizer for PCB Assembly Line')
parser.add_argument('--feeder_limit', default=2, type=int,
help='the upper feeder limit for each type of component')
params = parser.parse_args()
# 结果输出显示所有行和列
@ -307,10 +168,13 @@ if __name__ == '__main__':
pd.set_option('display.max_rows', None)
# 加载PCB数据
pcb_data, component_data, _ = load_data(params.filename, component_register=params.auto_register) # 加载PCB数据
pcb_data, component_data, _ = load_data(params.filename, default_feeder_limit=params.feeder_limit,
cp_auto_register=params.auto_register) # 加载PCB数据
optimizer(pcb_data, component_data)
optimizer(pcb_data, component_data, params.assembly_optimizer, params.base_optimizer)
if __name__ == '__main__':
main()