增加预安装供料器功能、路径规划模型支持单点、整线优化支持批量处理

This commit is contained in:
2024-11-01 09:14:44 +08:00
parent 37f4e5b02c
commit 045f2f394d
15 changed files with 990 additions and 936 deletions

View File

@ -1,5 +1,7 @@
import time
import pandas as pd
from dataloader import *
from lineopt_genetic import line_optimizer_genetic
from lineopt_heuristic import line_optimizer_heuristic
@ -10,11 +12,9 @@ from lineopt_model import line_optimizer_model
from base_optimizer.optimizer_interface import *
def optimizer(pcb_data, component_data, params):
def optimizer(pcb_data, component_data, feeder_data, params):
if params.machine_number == 1:
assembly_info = [
base_optimizer(1, pcb_data, component_data, pd.DataFrame(columns=['slot', 'part', 'arg']), params,
hinter=True)]
assembly_info = [base_optimizer(1, pcb_data, component_data, feeder_data, params, hinter=True)]
return assembly_info
if params.line_optimizer == 'hyper-heuristic' or params.line_optimizer == 'heuristic' or params.line_optimizer \
@ -33,8 +33,8 @@ def optimizer(pcb_data, component_data, params):
for machine_index in range(params.machine_number):
assembly_info.append(base_optimizer(machine_index + 1, partial_pcb_data[machine_index],
partial_component_data[machine_index],
pd.DataFrame(columns=['slot', 'part', 'arg']), params, hinter=True))
elif params.line_optimizer == 'model':
pd.DataFrame(columns=['slot', 'part']), params, hinter=True))
elif params.line_optimizer == 'mip-model':
assembly_info = line_optimizer_model(component_data, pcb_data, params.machine_number)
else:
raise 'line optimizer method is not existed'
@ -44,19 +44,20 @@ def optimizer(pcb_data, component_data, params):
@timer_wrapper
def main():
warnings.simplefilter(action='ignore', category=FutureWarning)
# 参数解析
parser = argparse.ArgumentParser(description='assembly line optimizer implementation')
parser.add_argument('--mode', default=1, type=int, help='mode: 0 -directly load pcb data without optimization '
'for data analysis, 1 -optimize pcb data, 2 -batch test')
parser.add_argument('--filename', default='L01/KAN3-Z2.txt', type=str, help='load pcb data')
parser.add_argument('--filename', default='PCB.txt', type=str, help='load pcb data')
# parser.add_argument('--filename', default='chapter3-2/PCB2-8 Arg1.txt', type=str, help='load pcb data')
parser.add_argument('--comp_register', default=1, type=int, help='register the component according the pcb data')
parser.add_argument('--machine_number', default=2, type=int, help='the number of machine in the assembly line')
parser.add_argument('--machine_optimizer', default='feeder-scan', type=str, help='optimizer for single machine')
parser.add_argument('--machine_number', default=1, type=int, help='the number of machine in the assembly line')
# parser.add_argument('--machine_optimizer', default='mip-model', type=str, help='optimizer for single machine')
parser.add_argument('--machine_optimizer', default='feeder-priority', type=str, help='optimizer for single machine')
parser.add_argument('--line_optimizer', default='hyper-heuristic', type=str, help='optimizer for PCB assembly line')
# parser.add_argument('--line_optimizer', default='model', type=str, help='optimizer for PCB assembly line')
parser.add_argument('--feeder_limit', default=1, type=int, help='the upper feeder limit for each type of component')
parser.add_argument('--save', default=1, type=int, help='save the optimization result')
parser.add_argument('--save', default=0, type=int, help='save the optimization result')
parser.add_argument('--save_suffix', default='(10)', type=str, help='load pcb data')
params = parser.parse_args()
@ -88,14 +89,16 @@ def main():
f'standard deviation: {np.std([info.total_time for info in assembly_info]): .3f}')
elif params.mode == 1:
sys.stdout = open(f'record/{params.filename[:-4]}-{params.line_optimizer}.txt', 'w')
# sys.stdout = open(f'record/{params.filename[:-4]}-{params.line_optimizer}.txt', 'w')
# 加载PCB数据
partial_pcb_data, partial_component_data, _ = load_data(params.filename)
partial_pcb_data, partial_component_data, feeder_data = load_data(params.filename, load_feeder=True)
pcb_data, component_data = merge_data(partial_pcb_data, partial_component_data)
start_time = time.time()
assembly_info = optimizer(pcb_data, component_data, params)
sys.stdout = sys.__stdout__
assembly_info = optimizer(pcb_data, component_data, feeder_data, params)
# sys.stdout = sys.__stdout__
print(f'optimizer running time: {time.time() - start_time: .3f}')
for machine_idx, info in enumerate(assembly_info):
print(f'assembly time for machine {machine_idx + 1: d}: {info.total_time: .3f} s, total placement: '
@ -105,6 +108,37 @@ def main():
print(f'finial assembly time: {max(info.total_time for info in assembly_info): .3f} s, '
f'standard deviation: {np.std([info.total_time for info in assembly_info]): .3f}')
elif params.mode == 2:
machine_optimizer = ['two-phase', 'hybrid-genetic', 'cell-division', 'feeder-priority', 'aggregation']
running_round = 10
opt_columns = ['Cycle', 'Pick', 'Nozzle-Change', 'Running-Time']
opt_result, opt_runtime = defaultdict(pd.DataFrame), defaultdict(pd.DataFrame)
for opt in machine_optimizer:
opt_result[opt] =pd.DataFrame(columns=opt_columns)
opt_result[opt].index.name = 'file'
for _, file in enumerate(os.listdir('data/')):
if file[-3:] != 'txt':
continue
partial_pcb_data, partial_component_data, feeder_data = load_data(file)
pcb_data, component_data = merge_data(partial_pcb_data, partial_component_data)
for opt in machine_optimizer:
for round_idx in range(running_round):
print(f'--- file {file}, round {round_idx}, optimizer {opt} --- ')
params = parser.parse_args(['--machine_optimizer', opt, '--machine_number', str(1)])
start_time = time.time()
assembly_info = optimizer(pcb_data, component_data, feeder_data, params)
opt_result[opt].loc[file + str(round_idx + 1), 'Cycle'] = assembly_info[0].cycle_counter
opt_result[opt].loc[file + str(round_idx + 1), 'Pick'] = assembly_info[0].pickup_counter
opt_result[opt].loc[file + str(round_idx + 1), 'Nozzle-Change'] = assembly_info[0].nozzle_change_counter
opt_result[opt].loc[file + str(round_idx + 1), 'Running-Time'] = time.time() - start_time
with pd.ExcelWriter('result/machine_optimizer.xlsx', engine='openpyxl') as writer:
for opt, result in opt_result.items():
result.to_excel(writer, sheet_name=opt, float_format='%.3f', na_rep='')
else:
# line_optimizer = ['T-Solution', 'hyper-heuristic', 'genetic', 'reconfiguration']
line_optimizer = ['genetic']