Files
multi-model-optimizer/opt/smm/cell_division.py
2025-11-14 11:34:48 +08:00

238 lines
11 KiB
Python

from opt.smm.basis import *
from opt.utils import *
class CellDivisionOpt(BaseOpt):
def __init__(self, config, part_data, step_data, feeder_data=None):
super().__init__(config, part_data, step_data, feeder_data)
self.feeder_assigner = FeederAssignOpt(config, part_data, step_data)
self.e_gang_pick = 0.6
self.e_nz_change = 4
def evaluate(self, part_result, cycle_result, slot_result) -> float:
nozzle_change_counter = 0
for head in range(self.config.head_num):
nozzle = ''
for cycle in range(len(part_result)):
component_index = part_result[cycle][head]
if component_index == -1:
continue
if cycle != 0 and nozzle != self.part_data.loc[component_index, 'nz']:
nozzle_change_counter += 1
nozzle = self.part_data.loc[component_index, 'nz']
gang_pick_counter = 0
for cycle, feeder_slot in enumerate(slot_result):
pick_slot = defaultdict(int)
for head, slot in enumerate(feeder_slot):
if slot == -1:
continue
pick_slot[slot - head * (self.config.head_intv / self.config.slot_intv)] += 1
for _ in pick_slot.values():
gang_pick_counter += cycle_result[cycle]
return sum(cycle_result) + self.e_nz_change * nozzle_change_counter + self.e_gang_pick * gang_pick_counter
def convertor(self, part_cell, population):
assert part_cell['points'].sum() == len(self.step_data)
head_num = self.config.head_num
head_assignment = [[] for _ in range(head_num)]
wl = [0 for _ in range(head_num)] # workload
e1, e2, e3 = 1, 2, 1. / 6
part_result, cycle_result, feeder_slot_result = [], [], []
for index in population:
if part_cell.loc[index]['points'] == 0:
continue
# 元胞对应的元件类型和贴装点数
part_type, part_points = int(part_cell.loc[index, 'index']), int(part_cell.loc[index, 'points'])
nozzle_change, maxwl = [0 for _ in range(head_num)], [0 for _ in range(head_num)]
for head in range(head_num):
if head_assignment[head]:
assigned_part = head_assignment[head][-1][0]
if self.part_data.loc[assigned_part]['nz'] != self.part_data.loc[part_type]['nz']:
nozzle_change[head] = 1
wl1 = wl.copy()
wl1[head] += part_points
maxwl[head] = max(wl1) + e1 * nozzle_change[head]
awl, wl2 = min(maxwl), wl.copy()
for idx, val in enumerate(maxwl):
if val > awl:
wl2[idx] += e3
head_ = wl2.index(min(wl2))
wl[head_] += part_points
head_assignment[head_].append([part_type, part_points])
head_assignment_counter = [0 for _ in range(head_num)]
while True:
assigned_part, assigned_cycle = [-1 for _ in range(head_num)], [0 for _ in range(head_num)]
for head in range(head_num):
counter = head_assignment_counter[head]
if head_assignment[head] and head_assignment[head][counter][1] > 0:
assigned_part[head] = head_assignment[head][counter][0]
assigned_cycle[head] = head_assignment[head][counter][1]
nonzero_cycle = [cycle for cycle in assigned_cycle if cycle > 0]
if not nonzero_cycle:
break
cycle_result.append(min(nonzero_cycle))
part_result.append(assigned_part)
for head in range(head_num):
counter = head_assignment_counter[head]
if head_assignment[head] and head_assignment[head][counter][1] > 0:
head_assignment[head][counter][1] -= cycle_result[-1]
if head_assignment[head][counter][1] == 0 and counter < len(head_assignment[head]) - 1:
head_assignment_counter[head] += 1
slot_result = self.feeder_assigner.do(part_result, cycle_result)
return part_result, cycle_result, slot_result
def optimize(self, hinter=True):
# Crossover method: Two-point crossover
# Mutation method: Swap
# Parent selection method: Roulette wheel
# Termination condition: 20 successive non-improvement iterations
population_size = 40 # 种群规模
crossover_rate, mutation_rate = .6, .02
golden_section = 0.618
# 获取元件元胞
part_points = defaultdict(int)
for _, data in self.step_data.iterrows():
part_points[data.part] += 1
feeder_num = sum(self.part_data['fdn'])
part_cell = pd.DataFrame({'index': np.arange(feeder_num), 'points': np.zeros(feeder_num, dtype=int)})
cell_index = 0
for part_index, data in self.part_data.iterrows():
total_points, div_points = part_points[data.part], math.ceil(part_points[data.part] / data.fdn)
for _ in range(data.fdn):
part_cell.loc[cell_index, 'index'] = part_index
part_cell.loc[cell_index, 'points'] = min(div_points, total_points)
total_points -= div_points
cell_index += 1
part_cell = part_cell[~part_cell['points'].isin([0])]
# part_cell.sort_values(by = "points" , inplace = True, ascending = False)
best_population, best_part_cell = [], []
min_pop_val = float('inf') # 最优种群价值
Div, Imp = 0, 0
while True:
# randomly generate permutations
generation_ = np.array(part_cell.index)
pop_generation = []
for _ in range(population_size):
np.random.shuffle(generation_)
pop_generation.append(generation_.tolist())
pop_val = []
for pop in range(population_size):
part_result, cycle_result, slot_result = self.convertor(part_cell, pop_generation[pop])
pop_val.append(self.evaluate(part_result, cycle_result, slot_result))
# 初始化随机生成种群
Upit = int(1.5 * np.sqrt(len(part_cell)))
while Div < Upit:
if hinter:
print('----- current div : ' + str(Div) + ' , total div : ' + str(Upit) + ' -----')
# 选择
new_pop_generation, new_pop_val = [], []
top_k_index = GenOpe.get_top_kth(pop_val, int(population_size * 0.3))
for index in top_k_index:
new_pop_generation.append(pop_generation[index])
new_pop_val.append(pop_val[index])
index = [i for i in range(population_size)]
select_index = random.choices(index, weights=pop_val, k=population_size - int(population_size * 0.3))
for index in select_index:
new_pop_generation.append(pop_generation[index])
new_pop_val.append(pop_val[index])
pop_generation, pop_val = new_pop_generation, new_pop_val
# 交叉
for pop in range(population_size):
if pop % 2 == 0 and np.random.random() < crossover_rate:
index1, index2 = GenOpe.roulette_wheel_selection(pop_val), -1
while True:
index2 = GenOpe.roulette_wheel_selection(pop_val)
if index1 != index2:
break
# 两点交叉算子
pop_generation[index1], pop_generation[index2] = GenOpe.partially_mapped_crossover(pop_generation[index1],
pop_generation[index2])
if np.random.random() < mutation_rate:
index_ = GenOpe.roulette_wheel_selection(pop_val)
GenOpe.swap_mutation(pop_generation[index_])
# 将元件元胞分配到各个吸杆上,计算价值函数
for pop in range(population_size):
part_result, cycle_result, slot_result = self.convertor(part_cell, pop_generation[pop])
pop_val[pop] = self.evaluate(part_result, cycle_result, slot_result)
assert pop_val[pop] > 0
if min(pop_val) < min_pop_val:
min_pop_val = min(pop_val)
best_population = copy.deepcopy(pop_generation[np.argmin(pop_val)])
best_part_cell = copy.deepcopy(part_cell)
Div, Imp = 0, 1
else:
Div += 1
if Imp == 1:
Div, Imp = 0, 0
# Section: cell division operation
if hinter:
print(' ------------- cell division operation ------------- ')
div_part_cell = pd.DataFrame()
for idx, rows in part_cell.iterrows():
if part_cell.loc[idx, 'points'] <= 1:
div_part_cell = pd.concat([div_part_cell, pd.DataFrame([rows])], ignore_index=True)
else:
div_part_cell = pd.concat([div_part_cell, pd.DataFrame([rows] * 2)], ignore_index=True)
rows_counter = len(div_part_cell)
div_points = int(max(np.ceil(div_part_cell.loc[rows_counter - 2, 'points'] * golden_section), 1))
# 避免出现空元胞的情形
if div_points == 0 or div_points == div_part_cell.loc[rows_counter - 2, 'points']:
div_part_cell.loc[rows_counter - 2, 'points'] = 1
else:
div_part_cell.loc[rows_counter - 2, 'points'] = div_points
div_part_cell.loc[rows_counter - 1, 'points'] -= div_part_cell.loc[rows_counter - 2, 'points']
if div_part_cell.loc[rows_counter - 2, 'points'] == 0 or \
div_part_cell.loc[rows_counter - 1, 'points'] == 0:
raise ValueError
part_cell = div_part_cell
# 完成分裂后重新生成染色体组
generation_ = np.array(range(len(part_cell)))
pop_generation = []
for _ in range(population_size):
np.random.shuffle(generation_)
pop_generation.append(generation_.tolist())
else:
break
assert len(best_part_cell) == len(best_population)
self.result.part, self.result.cycle, self.result.slot = self.convertor(best_part_cell, best_population)
self.result.point, self.result.sequence = self.path_planner.scan_based(self.result.part,
self.result.cycle, self.result.slot)