315 lines
14 KiB
Python
315 lines
14 KiB
Python
from core.common import *
|
|
from opt.smm.basis import BaseOpt
|
|
|
|
import torch
|
|
|
|
|
|
class Predictor:
|
|
def __init__(self):
|
|
pass
|
|
|
|
@staticmethod
|
|
def training(self, params):
|
|
pass
|
|
|
|
@staticmethod
|
|
def testing(self, params):
|
|
pass
|
|
|
|
@staticmethod
|
|
def predict(self, cp_points, cp_nozzle, board_width=None, board_height=None):
|
|
pass
|
|
|
|
|
|
class Net(torch.nn.Module):
|
|
def __init__(self, input_size, hidden_size=1000, output_size=1):
|
|
super(Net, self).__init__()
|
|
self.fc1 = torch.nn.Linear(input_size, hidden_size)
|
|
self.relu = torch.nn.ReLU() # ¼¤»îº¯Êý
|
|
self.fc2 = torch.nn.Linear(hidden_size, hidden_size)
|
|
# self.relu1 = torch.nn.ReLU() # ¼¤»îº¯Êý
|
|
self.fc3 = torch.nn.Linear(hidden_size, output_size)
|
|
|
|
def forward(self, x):
|
|
x = self.fc1(x)
|
|
# x = self.relu(x)
|
|
x = self.fc2(x)
|
|
x = self.relu(x)
|
|
x = self.fc3(x)
|
|
return x
|
|
|
|
|
|
class NeuralPredictor(Predictor, BaseOpt):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.min_placement_points = 10
|
|
self.max_placement_points = 1000
|
|
|
|
self.max_component_types = 30
|
|
self.default_feeder_limit = 1
|
|
self.max_nozzle_types = 4
|
|
|
|
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
self.net = Net(input_size=self.get_feature(), output_size=1).to(self.device)
|
|
self.net_file = 'opt/param.pth'
|
|
try:
|
|
self.net.load_state_dict(torch.load(self.net_file, map_location=self.device))
|
|
except:
|
|
warnings.warn('the parameters of neural net model load failed', UserWarning)
|
|
|
|
def init_weights(self):
|
|
for m in self.net.modules():
|
|
if isinstance(m, torch.nn.Linear):
|
|
torch.nn.init.xavier_uniform_(m.weight)
|
|
torch.nn.init.zeros_(m.bias)
|
|
|
|
def subobjective(self, cp_points, cp_nozzle, config):
|
|
if len(cp_points.keys()) or sum(cp_points.values()) == 0:
|
|
return 0, 0, 0, 0
|
|
nozzle_heads, nozzle_points = defaultdict(int), defaultdict(int)
|
|
for idx, points in cp_points.items():
|
|
if points == 0:
|
|
continue
|
|
nozzle = cp_nozzle[idx]
|
|
nozzle_points[nozzle] += points
|
|
nozzle_heads[nozzle] = 1
|
|
|
|
anc_round_counter = 0
|
|
while sum(nozzle_heads.values()) != config.head_num:
|
|
max_cycle_nozzle = None
|
|
|
|
for nozzle, head_num in nozzle_heads.items():
|
|
if max_cycle_nozzle is None or nozzle_points[nozzle] / head_num > nozzle_points[max_cycle_nozzle] / \
|
|
nozzle_heads[max_cycle_nozzle]:
|
|
max_cycle_nozzle = nozzle
|
|
assert max_cycle_nozzle is not None
|
|
nozzle_heads[max_cycle_nozzle] += 1
|
|
|
|
head_nozzle_assignment, min_cost = None, None
|
|
|
|
# generate initial nozzle group
|
|
nozzle_group = []
|
|
# averagely assign for the same type of nozzles, and generate nozzle group
|
|
nozzle_points_cpy = copy.deepcopy(nozzle_points)
|
|
for nozzle, heads in nozzle_heads.items():
|
|
points = nozzle_points_cpy[nozzle] // heads
|
|
for _ in range(heads):
|
|
nozzle_group.append([nozzle, points])
|
|
nozzle_points_cpy[nozzle] -= heads * points
|
|
|
|
for idx, [nozzle, _] in enumerate(nozzle_group):
|
|
if nozzle_points_cpy[nozzle]:
|
|
nozzle_group[idx][1] += 1
|
|
nozzle_points_cpy[nozzle] -= 1
|
|
|
|
while True:
|
|
# assign nozzle group to each head
|
|
nozzle_group.sort(key=lambda x: -x[1])
|
|
|
|
tmp_head_nozzle_assignment = []
|
|
head_total_points = [0 for _ in range(config.head_num)]
|
|
for idx, nozzle_item in enumerate(nozzle_group):
|
|
if idx < config.head_num:
|
|
tmp_head_nozzle_assignment.append([nozzle_item.copy()])
|
|
head_total_points[idx] += nozzle_item[1]
|
|
else:
|
|
min_head = np.argmin(head_total_points)
|
|
tmp_head_nozzle_assignment[min_head].append(nozzle_item.copy())
|
|
head_total_points[min_head] += nozzle_item[1]
|
|
|
|
cost = config.cycle_time * max(head_total_points)
|
|
for head in range(config.head_num):
|
|
for cycle in range(len(tmp_head_nozzle_assignment[head])):
|
|
if cycle + 1 == len(tmp_head_nozzle_assignment[head]):
|
|
if tmp_head_nozzle_assignment[head][cycle][0] != tmp_head_nozzle_assignment[head][-1][0]:
|
|
cost += self.nozzle_change_weight
|
|
else:
|
|
if tmp_head_nozzle_assignment[head][cycle][0] != tmp_head_nozzle_assignment[head][cycle + 1][0]:
|
|
cost += self.nozzle_change_weight
|
|
|
|
while True:
|
|
min_head, max_head = np.argmin(head_total_points), np.argmax(head_total_points)
|
|
min_head_nozzle, max_head_nozzle = tmp_head_nozzle_assignment[min_head][-1][0], \
|
|
tmp_head_nozzle_assignment[max_head][-1][0]
|
|
if min_head_nozzle == max_head_nozzle:
|
|
break
|
|
|
|
min_head_list, max_head_list = [min_head], [max_head]
|
|
minmax_head_points = 0
|
|
for head in range(config.head_num):
|
|
if head in min_head_list or head in max_head_list:
|
|
minmax_head_points += head_total_points[head]
|
|
continue
|
|
|
|
# the max/min heads with the sum nozzle type
|
|
if tmp_head_nozzle_assignment[head][-1][0] == tmp_head_nozzle_assignment[min_head][-1][0]:
|
|
min_head_list.append(head)
|
|
minmax_head_points += head_total_points[head]
|
|
|
|
if tmp_head_nozzle_assignment[head][-1][0] == tmp_head_nozzle_assignment[max_head][-1][0]:
|
|
max_head_list.append(head)
|
|
minmax_head_points += head_total_points[head]
|
|
|
|
# todo: restriction of available nozzle
|
|
# the reduction of cycles is not offset the cost of nozzle change
|
|
average_points = minmax_head_points // (len(min_head_list) + len(max_head_list))
|
|
reminder_points = minmax_head_points % (len(min_head_list) + len(max_head_list))
|
|
max_cycle = average_points + (1 if reminder_points > 0 else 0)
|
|
for head in range(config.head_num):
|
|
if head in min_head_list or head in max_head_list:
|
|
continue
|
|
max_cycle = max(max_cycle, head_total_points[head])
|
|
|
|
nozzle_change_counter = 0
|
|
for head in min_head_list:
|
|
if tmp_head_nozzle_assignment[head][0] == tmp_head_nozzle_assignment[head][-1]:
|
|
nozzle_change_counter += 2
|
|
else:
|
|
nozzle_change_counter += 1
|
|
|
|
if self.cycle_weight * (max(head_total_points) - max_cycle) < self.nozzle_change_weight * nozzle_change_counter:
|
|
break
|
|
|
|
cost -= self.cycle_weight * (max(head_total_points) - max_cycle) - self.nozzle_change_weight * nozzle_change_counter
|
|
|
|
required_points = 0 # ´ý¾ù̯µÄÌù×°µãÊý½Ï¶àµÄÎü×ìÀàÐÍ
|
|
for head in min_head_list:
|
|
points = average_points - head_total_points[head]
|
|
tmp_head_nozzle_assignment[head].append([max_head_nozzle, points])
|
|
head_total_points[head] = average_points
|
|
required_points += points
|
|
|
|
for head in max_head_list:
|
|
tmp_head_nozzle_assignment[head][-1][1] -= required_points // len(max_head_list)
|
|
head_total_points[head] -= required_points // len(max_head_list)
|
|
|
|
required_points -= (required_points // len(max_head_list)) * len(max_head_list)
|
|
|
|
for head in max_head_list:
|
|
if required_points <= 0:
|
|
break
|
|
tmp_head_nozzle_assignment[head][-1][1] -= 1
|
|
head_total_points[head] -= 1
|
|
required_points -= 1
|
|
|
|
if min_cost is None or cost < min_cost:
|
|
min_cost = cost
|
|
head_nozzle_assignment = copy.deepcopy(tmp_head_nozzle_assignment)
|
|
else:
|
|
break
|
|
|
|
# ÔÚÎü×ì×éÖÐÔö¼ÓÒ»¸öÎü×ì
|
|
idx, nozzle = 0, nozzle_group[0][0]
|
|
for idx, [nozzle_, _] in enumerate(nozzle_group):
|
|
if nozzle_ != nozzle:
|
|
break
|
|
|
|
average_points, remainder_points = nozzle_points[nozzle] // (idx + 1), nozzle_points[nozzle] % (idx + 1)
|
|
nozzle_group.append([nozzle, 0])
|
|
for idx, [nozzle_, _] in enumerate(nozzle_group):
|
|
if nozzle_ == nozzle:
|
|
nozzle_group[idx][1] = average_points + (1 if remainder_points > 0 else 0)
|
|
remainder_points -= 1
|
|
|
|
cycle_counter, nozzle_change_counter = 0, 0
|
|
for head in range(config.head_num):
|
|
head_cycle_counter = 0
|
|
for cycle in range(len(head_nozzle_assignment[head])):
|
|
if cycle + 1 == len(head_nozzle_assignment[head]):
|
|
if head_nozzle_assignment[head][0][0] != head_nozzle_assignment[head][-1][0]:
|
|
nozzle_change_counter += 1
|
|
else:
|
|
if head_nozzle_assignment[head][cycle][0] != head_nozzle_assignment[head][cycle + 1][0]:
|
|
nozzle_change_counter += 1
|
|
head_cycle_counter += head_nozzle_assignment[head][cycle][1]
|
|
cycle_counter = max(cycle_counter, head_cycle_counter)
|
|
|
|
# === Ôª¼þʰȡ´ÎÊýÔ¤¹À ===
|
|
cp_info = []
|
|
for idx, points in cp_points.items():
|
|
if points == 0:
|
|
continue
|
|
feeder_limit = 1 # todo: ÔÝʱ½ö¿¼ÂÇÒ»ÖÖÎü×ìµÄÇéÐÎ
|
|
reminder_points = points % feeder_limit
|
|
for _ in range(feeder_limit):
|
|
cp_info.append([idx, points // feeder_limit + (1 if reminder_points > 0 else 0), cp_nozzle[idx]])
|
|
reminder_points -= 1
|
|
|
|
cp_info.sort(key=lambda x: -x[1])
|
|
|
|
nozzle_level, nozzle_counter = defaultdict(int), defaultdict(int)
|
|
level_points = defaultdict(int)
|
|
for info in cp_info:
|
|
nozzle = info[2]
|
|
if nozzle_counter[nozzle] and nozzle_counter[nozzle] % nozzle_heads[nozzle] == 0:
|
|
nozzle_level[nozzle] += 1
|
|
level = nozzle_level[nozzle]
|
|
level_points[level] = max(level_points[level], info[1])
|
|
nozzle_counter[nozzle] += 1
|
|
|
|
pickup_counter = sum(points for points in level_points.values())
|
|
|
|
return cycle_counter, nozzle_change_counter, anc_round_counter, pickup_counter
|
|
|
|
def encode(self, cp_points: defaultdict[str], cp_nozzle: defaultdict[str], board_width, board_height, config):
|
|
assert len(cp_points.keys()) == len(cp_nozzle.keys())
|
|
|
|
# === general info ===
|
|
total_points = sum(points for points in cp_points.values())
|
|
total_component_types, total_nozzle_types = len(cp_points.keys()), len(set(cp_nozzle.values()))
|
|
|
|
data = [total_points, total_component_types, total_nozzle_types]
|
|
data.extend([board_width, board_height])
|
|
|
|
# === heuristic info ===
|
|
cycle, nozzle_change, anc_move, pickup = self.subobjective(cp_points, cp_nozzle, config)
|
|
data.extend([cycle, nozzle_change, anc_move, pickup])
|
|
|
|
# === nozzle info ===
|
|
nozzle_points = defaultdict(int)
|
|
for cp_idx, nozzle in cp_nozzle.items():
|
|
nozzle_points[cp_nozzle[cp_idx]] += cp_points[cp_idx] # points for different nozzle type
|
|
nozzle_items = [[nozzle, points] for nozzle, points in nozzle_points.items()]
|
|
nozzle_items = sorted(nozzle_items, key=lambda x: x[1], reverse=True)
|
|
|
|
nz2idx = defaultdict(int)
|
|
nozzle_slice = [0 for _ in range(self.max_nozzle_types)]
|
|
for idx, [nozzle, points] in enumerate(nozzle_items):
|
|
nz2idx[nozzle] = idx if idx < self.max_nozzle_types else self.max_nozzle_types - 1
|
|
nozzle_slice[idx if idx < self.max_nozzle_types else -1] += points
|
|
data.extend(nozzle_slice)
|
|
|
|
# === part info ===
|
|
part_data_slice = defaultdict(list)
|
|
for idx in range(self.max_nozzle_types):
|
|
part_data_slice[idx] = []
|
|
|
|
cp_items = [[component, points] for component, points in cp_points.items()]
|
|
cp_items = sorted(cp_items, key=lambda x: (x[1], nz2idx[cp_nozzle[x[0]]] * 0.1 + x[1]), reverse=True)
|
|
for component, points in cp_items:
|
|
nozzle = cp_nozzle[component]
|
|
part_data_slice[nz2idx[nozzle]].append(points)
|
|
|
|
data_slice = [0 for _ in range(self.max_nozzle_types)]
|
|
for idx, part_list in part_data_slice.items():
|
|
data_slice[idx] = len(part_list)
|
|
data.extend(data_slice)
|
|
|
|
for idx in range(self.max_nozzle_types):
|
|
if len(part_data_slice[idx]) <= self.max_component_types:
|
|
part_data_slice[idx].extend([0 for _ in range(self.max_component_types - len(part_data_slice[idx]))])
|
|
else:
|
|
part_data_slice[idx] = part_data_slice[idx][:self.max_component_types]
|
|
data.extend(part_data_slice[idx])
|
|
|
|
return data
|
|
|
|
def get_feature(self):
|
|
return (self.max_component_types + 2) * self.max_nozzle_types + 5 + 4
|
|
|
|
def eval(self, cp_points, cp_nozzle, board_width, board_height, config):
|
|
encoding = np.array(self.encode(cp_points, cp_nozzle, board_width, board_height, config))
|
|
encoding = torch.from_numpy(encoding.reshape((-1, np.shape(encoding)[0]))).float().to(self.device)
|
|
return self.net(encoding)[0, 0].item()
|