from opt.smm.basis import * from opt.utils import * class CellDivisionOpt(BaseOpt): def __init__(self, config, part_data, step_data, feeder_data=None): super().__init__(config, part_data, step_data, feeder_data) self.feeder_assigner = FeederAssignOpt(config, part_data, step_data) self.e_gang_pick = 0.6 self.e_nz_change = 4 def evaluate(self, part_result, cycle_result, slot_result) -> float: nozzle_change_counter = 0 for head in range(self.config.head_num): nozzle = '' for cycle in range(len(part_result)): component_index = part_result[cycle][head] if component_index == -1: continue if cycle != 0 and nozzle != self.part_data.loc[component_index, 'nz']: nozzle_change_counter += 1 nozzle = self.part_data.loc[component_index, 'nz'] gang_pick_counter = 0 for cycle, feeder_slot in enumerate(slot_result): pick_slot = defaultdict(int) for head, slot in enumerate(feeder_slot): if slot == -1: continue pick_slot[slot - head * (self.config.head_intv / self.config.slot_intv)] += 1 for _ in pick_slot.values(): gang_pick_counter += cycle_result[cycle] return sum(cycle_result) + self.e_nz_change * nozzle_change_counter + self.e_gang_pick * gang_pick_counter def convertor(self, part_cell, population): assert part_cell['points'].sum() == len(self.step_data) head_num = self.config.head_num head_assignment = [[] for _ in range(head_num)] wl = [0 for _ in range(head_num)] # workload e1, e2, e3 = 1, 2, 1. / 6 part_result, cycle_result, feeder_slot_result = [], [], [] for index in population: if part_cell.loc[index]['points'] == 0: continue # 元胞对应的元件类型和贴装点数 part_type, part_points = int(part_cell.loc[index, 'index']), int(part_cell.loc[index, 'points']) nozzle_change, maxwl = [0 for _ in range(head_num)], [0 for _ in range(head_num)] for head in range(head_num): if head_assignment[head]: assigned_part = head_assignment[head][-1][0] if self.part_data.loc[assigned_part]['nz'] != self.part_data.loc[part_type]['nz']: nozzle_change[head] = 1 wl1 = wl.copy() wl1[head] += part_points maxwl[head] = max(wl1) + e1 * nozzle_change[head] awl, wl2 = min(maxwl), wl.copy() for idx, val in enumerate(maxwl): if val > awl: wl2[idx] += e3 head_ = wl2.index(min(wl2)) wl[head_] += part_points head_assignment[head_].append([part_type, part_points]) head_assignment_counter = [0 for _ in range(head_num)] while True: assigned_part, assigned_cycle = [-1 for _ in range(head_num)], [0 for _ in range(head_num)] for head in range(head_num): counter = head_assignment_counter[head] if head_assignment[head] and head_assignment[head][counter][1] > 0: assigned_part[head] = head_assignment[head][counter][0] assigned_cycle[head] = head_assignment[head][counter][1] nonzero_cycle = [cycle for cycle in assigned_cycle if cycle > 0] if not nonzero_cycle: break cycle_result.append(min(nonzero_cycle)) part_result.append(assigned_part) for head in range(head_num): counter = head_assignment_counter[head] if head_assignment[head] and head_assignment[head][counter][1] > 0: head_assignment[head][counter][1] -= cycle_result[-1] if head_assignment[head][counter][1] == 0 and counter < len(head_assignment[head]) - 1: head_assignment_counter[head] += 1 slot_result = self.feeder_assigner.do(part_result, cycle_result) return part_result, cycle_result, slot_result def optimize(self, hinter=True): # Crossover method: Two-point crossover # Mutation method: Swap # Parent selection method: Roulette wheel # Termination condition: 20 successive non-improvement iterations population_size = 40 # 种群规模 crossover_rate, mutation_rate = .6, .02 golden_section = 0.618 # 获取元件元胞 part_points = defaultdict(int) for _, data in self.step_data.iterrows(): part_points[data.part] += 1 feeder_num = sum(self.part_data['fdn']) part_cell = pd.DataFrame({'index': np.arange(feeder_num), 'points': np.zeros(feeder_num, dtype=int)}) cell_index = 0 for part_index, data in self.part_data.iterrows(): total_points, div_points = part_points[data.part], math.ceil(part_points[data.part] / data.fdn) for _ in range(data.fdn): part_cell.loc[cell_index, 'index'] = part_index part_cell.loc[cell_index, 'points'] = min(div_points, total_points) total_points -= div_points cell_index += 1 part_cell = part_cell[~part_cell['points'].isin([0])] # part_cell.sort_values(by = "points" , inplace = True, ascending = False) best_population, best_part_cell = [], [] min_pop_val = float('inf') # 最优种群价值 Div, Imp = 0, 0 while True: # randomly generate permutations generation_ = np.array(part_cell.index) pop_generation = [] for _ in range(population_size): np.random.shuffle(generation_) pop_generation.append(generation_.tolist()) pop_val = [] for pop in range(population_size): part_result, cycle_result, slot_result = self.convertor(part_cell, pop_generation[pop]) pop_val.append(self.evaluate(part_result, cycle_result, slot_result)) # 初始化随机生成种群 Upit = int(1.5 * np.sqrt(len(part_cell))) while Div < Upit: if hinter: print('----- current div : ' + str(Div) + ' , total div : ' + str(Upit) + ' -----') # 选择 new_pop_generation, new_pop_val = [], [] top_k_index = GenOpe.get_top_kth(pop_val, int(population_size * 0.3)) for index in top_k_index: new_pop_generation.append(pop_generation[index]) new_pop_val.append(pop_val[index]) index = [i for i in range(population_size)] select_index = random.choices(index, weights=pop_val, k=population_size - int(population_size * 0.3)) for index in select_index: new_pop_generation.append(pop_generation[index]) new_pop_val.append(pop_val[index]) pop_generation, pop_val = new_pop_generation, new_pop_val # 交叉 for pop in range(population_size): if pop % 2 == 0 and np.random.random() < crossover_rate: index1, index2 = GenOpe.roulette_wheel_selection(pop_val), -1 while True: index2 = GenOpe.roulette_wheel_selection(pop_val) if index1 != index2: break # 两点交叉算子 pop_generation[index1], pop_generation[index2] = GenOpe.partially_mapped_crossover(pop_generation[index1], pop_generation[index2]) if np.random.random() < mutation_rate: index_ = GenOpe.roulette_wheel_selection(pop_val) GenOpe.swap_mutation(pop_generation[index_]) # 将元件元胞分配到各个吸杆上,计算价值函数 for pop in range(population_size): part_result, cycle_result, slot_result = self.convertor(part_cell, pop_generation[pop]) pop_val[pop] = self.evaluate(part_result, cycle_result, slot_result) assert pop_val[pop] > 0 if min(pop_val) < min_pop_val: min_pop_val = min(pop_val) best_population = copy.deepcopy(pop_generation[np.argmin(pop_val)]) best_part_cell = copy.deepcopy(part_cell) Div, Imp = 0, 1 else: Div += 1 if Imp == 1: Div, Imp = 0, 0 # Section: cell division operation if hinter: print(' ------------- cell division operation ------------- ') div_part_cell = pd.DataFrame() for idx, rows in part_cell.iterrows(): if part_cell.loc[idx, 'points'] <= 1: div_part_cell = pd.concat([div_part_cell, pd.DataFrame([rows])], ignore_index=True) else: div_part_cell = pd.concat([div_part_cell, pd.DataFrame([rows] * 2)], ignore_index=True) rows_counter = len(div_part_cell) div_points = int(max(np.ceil(div_part_cell.loc[rows_counter - 2, 'points'] * golden_section), 1)) # 避免出现空元胞的情形 if div_points == 0 or div_points == div_part_cell.loc[rows_counter - 2, 'points']: div_part_cell.loc[rows_counter - 2, 'points'] = 1 else: div_part_cell.loc[rows_counter - 2, 'points'] = div_points div_part_cell.loc[rows_counter - 1, 'points'] -= div_part_cell.loc[rows_counter - 2, 'points'] if div_part_cell.loc[rows_counter - 2, 'points'] == 0 or \ div_part_cell.loc[rows_counter - 1, 'points'] == 0: raise ValueError part_cell = div_part_cell # 完成分裂后重新生成染色体组 generation_ = np.array(range(len(part_cell))) pop_generation = [] for _ in range(population_size): np.random.shuffle(generation_) pop_generation.append(generation_.tolist()) else: break assert len(best_part_cell) == len(best_population) self.result.part, self.result.cycle, self.result.slot = self.convertor(best_part_cell, best_population) self.result.point, self.result.sequence = self.path_planner.scan_based(self.result.part, self.result.cycle, self.result.slot)