优化器类的定义和实现

This commit is contained in:
2025-11-14 11:34:48 +08:00
parent a37ee38369
commit 79b09b2578
11 changed files with 4004 additions and 0 deletions

172
opt/smm/aggregation.py Normal file
View File

@@ -0,0 +1,172 @@
from opt.smm.basis import *
from opt.utils import *
from opt.smm.solver import *
class Aggregation(BaseOpt):
def __init__(self, config, part_data, step_data, feeder_data=pd.DataFrame(columns=['slot', 'part'])):
super().__init__(config, part_data, step_data, feeder_data)
self.feeder_assigner = FeederAssignOpt(config, part_data, step_data)
def optimize(self, hinter=True):
# === phase 0: data preparation ===
M = 1000 # a sufficient large number
a, b = 1, 6 # coefficient
part_list, nozzle_list = defaultdict(int), defaultdict(int)
cpidx_2_part, nzidx_2_nozzle = {}, {}
for _, data in self.step_data.iterrows():
part = data.part
if part not in cpidx_2_part.values():
cpidx_2_part[len(cpidx_2_part)] = part
part_list[part] += 1
idx = self.part_data[self.part_data['part'] == part].index.tolist()[0]
nozzle = self.part_data.loc[idx]['nz']
if nozzle not in nzidx_2_nozzle.values():
nzidx_2_nozzle[len(nzidx_2_nozzle)] = nozzle
nozzle_list[nozzle] += 1
I, J = len(part_list.keys()), len(nozzle_list.keys()) # the maximum number of part types and nozzle types
L = I + 1 # the maximum number of batch level
K = self.config.head_num # the maximum number of heads
HC = [[M for _ in range(J)] for _ in range(I)] # represent the nozzle-part compatibility
for i in range(I):
for _, item in enumerate(cpidx_2_part.items()):
index, part = item
cp_idx = self.part_data[self.part_data['part'] == part].index.tolist()[0]
nozzle = self.part_data.loc[cp_idx]['nz']
for j in range(J):
if nzidx_2_nozzle[j] == nozzle:
HC[index][j] = 0
# === phase 1: mathematical model solver ===
mdl = Model('SMT')
# mdl.setParam('OutputFlag', hinter)
# === Decision Variables ===
# the largest workload of all placement heads
WL = mdl.addVar(vtype=GRB.INTEGER, lb=0, ub=len(self.step_data), name='WL')
# the number of parts of type i that are placed by nozzle type j on placement head k
X = mdl.addVars(I, J, K, vtype=GRB.INTEGER, ub=max(part_list.values()), name='X')
# the total number of nozzle changes on placement head k
N = mdl.addVars(K, vtype=GRB.INTEGER, name='N')
# whether batch Xijk is placed on level l
Z = mdl.addVars(I, J, L, K, vtype=GRB.BINARY, name='Z')
# Dlk := 2 if a change of nozzles in the level l + 1 on placement head k
# Dlk := 1 if there are no batches placed on levels higher than l
# Dlk := 0 otherwise
D = mdl.addVars(L, K, vtype=GRB.BINARY, name='D')
D_plus = mdl.addVars(L, J, K, vtype=GRB.INTEGER, name='D_plus')
D_minus = mdl.addVars(L, J, K, vtype=GRB.INTEGER, name='D_minus')
# == Objective function ===
mdl.setObjective(a * WL + b * quicksum(N[k] for k in range(K)), GRB.MINIMIZE)
# === Constraint ===
mdl.addConstrs(
quicksum(X[i, j, k] for j in range(J) for k in range(K)) == part_list[cpidx_2_part[i]] for i in range(I))
mdl.addConstrs(quicksum(X[i, j, k] for i in range(I) for j in range(J)) <= WL for k in range(K))
mdl.addConstrs(
X[i, j, k] <= M * quicksum(Z[i, j, l, k] for l in range(L)) for i in range(I) for j in range(J) for k in
range(K))
mdl.addConstrs(
quicksum(Z[i, j, l, k] for l in range(L)) <= 1 for i in range(I) for j in range(J) for k in range(K))
mdl.addConstrs(
quicksum(Z[i, j, l, k] for l in range(L)) <= X[i, j, k] for i in range(I) for j in range(J) for k in
range(K))
mdl.addConstrs(quicksum(Z[i, j, l, k] for j in range(J) for i in range(I)) >= quicksum(
Z[i, j, l + 1, k] for j in range(J) for i in range(I)) for k in range(K) for l in range(L - 1))
mdl.addConstrs(
quicksum(Z[i, j, l, k] for i in range(I) for j in range(J)) <= 1 for k in range(K) for l in range(L))
mdl.addConstrs(D_plus[l, j, k] - D_minus[l, j, k] == quicksum(Z[i, j, l, k] for i in range(I)) - quicksum(
Z[i, j, l + 1, k] for i in range(I)) for l in range(L - 1) for j in range(J) for k in range(K))
mdl.addConstrs(
D[l, k] == quicksum((D_plus[l, j, k] + D_minus[l, j, k]) for j in range(J)) for k in range(K) for l in
range(L))
# mdl.addConstrs(2 * N[k] == quicksum(D[l, k] for l in range(L)) - 1 for k in range(K))
# mdl.addConstrs(
# 0 >= quicksum(HC[i][j] * Z[i, j, l, k] for i in range(I) for j in range(J)) for l in range(L) for k in
# range(K))
# === Main Process ===
mdl.TimeLimit = 100
mdl.optimize()
if mdl.Status == GRB.OPTIMAL or mdl.Status == GRB.TIME_LIMIT:
print('total cost = {}'.format(mdl.objval))
# convert cp model solution to standard output
model_cycle_result, model_part_result = [], []
for l in range(L):
model_part_result.append([None for _ in range(K)])
model_cycle_result.append([0 for _ in range(K)])
for k in range(K):
for i in range(I):
for j in range(J):
if abs(Z[i, j, l, k].x - 1) <= 1e-3:
model_part_result[-1][k] = cpidx_2_part[i]
model_cycle_result[-1][k] = round(X[i, j, k].x)
# remove redundant term
if sum(model_cycle_result[-1]) == 0:
model_part_result.pop()
model_cycle_result.pop()
head_part_index = [0 for _ in range(self.config.head_num)]
while True:
head_cycle = []
for head, index in enumerate(head_part_index):
head_cycle.append(model_cycle_result[index][head])
if len([cycle for cycle in head_cycle if cycle > 0]) == 0:
break
self.result.part.append([None for _ in range(self.config.head_num)])
min_cycle = min([cycle for cycle in head_cycle if cycle > 0])
for head, index in enumerate(head_part_index):
if model_cycle_result[index][head] != 0:
self.result.part[-1][head] = model_part_result[index][head]
else:
continue
model_cycle_result[index][head] -= min_cycle
if model_cycle_result[index][head] == 0 and index + 1 < len(model_cycle_result):
head_part_index[head] += 1
self.result.cycle.append(min_cycle)
part_2_index = {}
for index, data in self.part_data.iterrows():
part_2_index[data['part']] = index
for cycle in range(len(self.result.part)):
for head in range(self.config.head_num):
part = self.result.part[cycle][head]
self.result.part[cycle][head] = -1 if part is None else part_2_index[part]
self.result.slot = self.feeder_assigner.do(self.result.part, self.result.cycle)
# === phase 2: heuristic method ===
self.result.point, self.result.sequence = self.path_planner.greedy_level_placing(self.result.part,
self.result.cycle,
self.result.slot)
else:
warnings.warn('No solution found!', UserWarning)