优化器类的定义和实现
This commit is contained in:
539
opt/hyper_heuristic.py
Normal file
539
opt/hyper_heuristic.py
Normal file
@@ -0,0 +1,539 @@
|
||||
from opt.predictor import NeuralPredictor
|
||||
from opt.utils import *
|
||||
from core.interface import *
|
||||
from core.common import *
|
||||
|
||||
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'
|
||||
|
||||
|
||||
class Heuristic:
|
||||
@staticmethod
|
||||
def apply(cp_points, cp_nozzle, cp_assign, config: defaultdict[int]):
|
||||
return -1
|
||||
|
||||
|
||||
class LeastPoints(Heuristic):
|
||||
@staticmethod
|
||||
def apply(cp_points, cp_nozzle, cp_assign, config: defaultdict[int]):
|
||||
machine_index, machine_points = [], []
|
||||
for index in config.keys():
|
||||
if len(cp_assign[index]) == 0:
|
||||
return index
|
||||
machine_index.append(index)
|
||||
machine_points.append(sum([cp_points[cp_idx] for cp_idx in cp_assign[index]]))
|
||||
|
||||
return machine_index[np.argmin(machine_points)]
|
||||
|
||||
|
||||
class LeastNzTypes(Heuristic):
|
||||
@staticmethod
|
||||
def apply(cp_points, cp_nozzle, cp_assign, config: defaultdict[int]):
|
||||
machine_index, machine_nozzle = [], []
|
||||
for index in config.keys():
|
||||
if len(cp_assign[index]) == 0:
|
||||
return index
|
||||
machine_index.append(index)
|
||||
machine_nozzle.append([cp_nozzle[cp_idx] for cp_idx in cp_assign[index]])
|
||||
index = np.argmin(
|
||||
[len(set(nozzle)) + 1e-5 * sum(cp_points[c] for c in cp_assign[machine_idx]) for machine_idx, nozzle in
|
||||
enumerate(machine_nozzle)])
|
||||
|
||||
return machine_index[index]
|
||||
|
||||
|
||||
class LeastCpTypes(Heuristic):
|
||||
@staticmethod
|
||||
def apply(cp_points, cp_nozzle, cp_assign, config: defaultdict[int]):
|
||||
machine_index, machine_types = [], []
|
||||
for index in config.keys():
|
||||
machine_index.append(index)
|
||||
machine_types.append(len(cp_assign[index]) + 1e-5 * sum(cp_points[cp] for cp in cp_assign[index]))
|
||||
|
||||
return machine_index[np.argmin(machine_types)]
|
||||
|
||||
|
||||
class LeastCpNzRatio(Heuristic):
|
||||
@staticmethod
|
||||
def apply(cp_points, cp_nozzle, cp_assign, config: defaultdict[int]):
|
||||
machine_index, machine_nz_type, machine_cp_type = [], [], []
|
||||
for index in config.keys():
|
||||
if len(cp_assign[index]) == 0:
|
||||
return index
|
||||
machine_index.append(index)
|
||||
machine_nz_type.append(set(cp_nozzle[cp_idx] for cp_idx in cp_assign[index]))
|
||||
machine_cp_type.append(len(cp_assign[index]))
|
||||
|
||||
min_idx = np.argmin([(machine_cp_type[idx] + 1e-5 * sum(
|
||||
cp_points[c] for c in cp_assign[machine_index[idx]])) / (len(machine_nz_type[idx]) + 1e-5) for idx in
|
||||
range(len(machine_index))])
|
||||
|
||||
return machine_index[min_idx]
|
||||
|
||||
|
||||
def nozzle_assignment(cp_points, cp_nozzle, cp_assign, head_num):
|
||||
nozzle_points = defaultdict(int)
|
||||
|
||||
for cp_idx in cp_assign:
|
||||
nozzle_points[cp_nozzle[cp_idx]] += cp_points[cp_idx]
|
||||
|
||||
while len(nozzle_points.keys()) > head_num:
|
||||
del nozzle_points[min(nozzle_points.items(), key=lambda x: x[1])[0]]
|
||||
|
||||
sum_points = sum(nozzle_points.values())
|
||||
nozzle_points = defaultdict(int, {k: v for k, v in nozzle_points.items() if v / sum_points >= 0.8 / head_num})
|
||||
nozzle_heads = defaultdict(int, {k: 1 for k in nozzle_points.keys()})
|
||||
|
||||
while sum(nozzle_heads.values()) != head_num:
|
||||
max_cycle_nozzle = None
|
||||
for nozzle, head_cnt in nozzle_heads.items():
|
||||
if max_cycle_nozzle is None or nozzle_points[nozzle] / head_cnt > nozzle_points[max_cycle_nozzle] / \
|
||||
nozzle_heads[max_cycle_nozzle]:
|
||||
max_cycle_nozzle = nozzle
|
||||
|
||||
assert max_cycle_nozzle is not None
|
||||
nozzle_heads[max_cycle_nozzle] += 1
|
||||
return nozzle_heads, nozzle_points
|
||||
|
||||
|
||||
class LeastCycle(Heuristic):
|
||||
@staticmethod
|
||||
def apply(cp_points, cp_nozzle, cp_assign, config: defaultdict[int]):
|
||||
machine_index, machine_cycle = [], []
|
||||
for index, head_num in config.items():
|
||||
assign_component = cp_assign[index]
|
||||
if len(assign_component) == 0:
|
||||
return index
|
||||
|
||||
nozzle_heads, nozzle_points = nozzle_assignment(cp_points, cp_nozzle, assign_component, head_num)
|
||||
machine_index.append(index)
|
||||
machine_cycle.append(
|
||||
max(nozzle_points[nozzle] / head for nozzle, head in nozzle_heads.items()) + 1e-5 * sum(
|
||||
cp_points[c] for c in cp_assign[index]))
|
||||
|
||||
return machine_index[np.argmin(machine_cycle)]
|
||||
|
||||
|
||||
class LeastNzChange(Heuristic):
|
||||
@staticmethod
|
||||
def apply(cp_points, cp_nozzle, cp_assign, config: defaultdict[int]):
|
||||
machine_index, machine_nozzle_change = [], []
|
||||
for index, head_num in config.items():
|
||||
assign_component = cp_assign[index]
|
||||
if len(assign_component) == 0:
|
||||
return index
|
||||
|
||||
heads_points = []
|
||||
nozzle_heads, nozzle_points = nozzle_assignment(cp_points, cp_nozzle, assign_component, head_num)
|
||||
for nozzle, head in nozzle_heads.items():
|
||||
for _ in range(head):
|
||||
heads_points.append(nozzle_points[nozzle] / nozzle_heads[nozzle])
|
||||
machine_index.append(index)
|
||||
machine_nozzle_change.append(np.std(heads_points) + 1e-5 * sum(cp_points[c] for c in cp_assign[index]))
|
||||
|
||||
return machine_index[np.argmin(machine_nozzle_change)]
|
||||
|
||||
|
||||
class LeastPickup(Heuristic):
|
||||
@staticmethod
|
||||
def apply(cp_points, cp_nozzle, cp_assign, config: defaultdict[int]):
|
||||
machine_index, machine_pick_up = [], []
|
||||
for index, head_num in config.items():
|
||||
assign_component = cp_assign[index]
|
||||
if len(assign_component) == 0:
|
||||
return index
|
||||
nozzle_heads, nozzle_points = nozzle_assignment(cp_points, cp_nozzle, assign_component, head_num)
|
||||
|
||||
nozzle_level, nozzle_counter = defaultdict(int), defaultdict(int)
|
||||
level_points = defaultdict(int)
|
||||
|
||||
for cp_idx in sorted(assign_component, key=lambda x: cp_points[x], reverse=True):
|
||||
nozzle, points = cp_nozzle[cp_idx], cp_points[cp_idx]
|
||||
if nozzle not in nozzle_heads.keys():
|
||||
continue
|
||||
if nozzle_counter[nozzle] and nozzle_counter[nozzle] % nozzle_heads[nozzle] == 0:
|
||||
nozzle_level[nozzle] += 1
|
||||
level = nozzle_level[nozzle]
|
||||
level_points[level] = max(level_points[level], points)
|
||||
nozzle_counter[nozzle] += 1
|
||||
machine_index.append(index)
|
||||
machine_pick_up.append(sum(points for points in level_points.values()) + 1e-5 * sum(
|
||||
cp_points[idx] for idx in cp_assign[index]))
|
||||
|
||||
return machine_index[np.argmin(machine_pick_up)]
|
||||
|
||||
|
||||
class HyperHeuristicOpt(BaseOpt):
|
||||
def __init__(self, machine_num, part_data, step_data, feeder_data=None):
|
||||
super().__init__(None, part_data, step_data, feeder_data)
|
||||
self.line_config = [MachineConfig() for _ in range(machine_num)]
|
||||
# self.base_opt = FeederPriorityOpt
|
||||
self.base_opt = CellDivisionOpt
|
||||
self.heuristic_map = {
|
||||
'p': LeastPoints,
|
||||
'n': LeastNzTypes,
|
||||
'c': LeastCpTypes,
|
||||
'r': LeastCpNzRatio,
|
||||
'k': LeastCycle,
|
||||
'g': LeastNzChange,
|
||||
'u': LeastPickup,
|
||||
}
|
||||
self.machine_num = machine_num
|
||||
self.predictor = NeuralPredictor()
|
||||
|
||||
self.cp_feeders = defaultdict(int)
|
||||
self.cp_nozzle = defaultdict(str)
|
||||
self.cp_points = defaultdict(int)
|
||||
self.cp_index = defaultdict(int)
|
||||
|
||||
part_points = defaultdict(int)
|
||||
for _, data in self.step_data.iterrows():
|
||||
part_points[data.part] += 1
|
||||
|
||||
division_part = []
|
||||
for _, data in self.part_data.iterrows():
|
||||
division_part.extend([part_points[data.part] / data.fdn for _ in range(data.fdn)])
|
||||
division_points = sum(division_part) / len(division_part)
|
||||
|
||||
idx = 0
|
||||
for cp_idx, data in self.part_data.iterrows():
|
||||
self.cp_feeders[cp_idx] = 1
|
||||
|
||||
division_data = copy.deepcopy(data)
|
||||
division_data['points'] = part_points[data.part]
|
||||
feeder_limit, total_points = division_data.fdn, division_data.points
|
||||
if feeder_limit != 1:
|
||||
feeder_limit = round(min(max(total_points // division_points * 1.5, feeder_limit), total_points))
|
||||
# feeder_limit = total_points # С<><D0A1>ģ<EFBFBD><C4A3><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
||||
surplus_points = total_points % feeder_limit
|
||||
for _ in range(feeder_limit):
|
||||
division_data.fdn, division_data.points = 1, math.floor(total_points / feeder_limit)
|
||||
if surplus_points:
|
||||
division_data.points += 1
|
||||
surplus_points -= 1
|
||||
|
||||
self.cp_points[idx], self.cp_nozzle[idx] = division_data.points, division_data.nz
|
||||
self.cp_index[idx] = cp_idx
|
||||
idx += 1
|
||||
|
||||
self.board_width = self.step_data['x'].max() - self.step_data['x'].min()
|
||||
self.board_height = self.step_data['y'].max() - self.step_data['y'].min()
|
||||
|
||||
def generate_pattern(self):
|
||||
"""
|
||||
Generates a random pattern.
|
||||
:return: The generated pattern string.
|
||||
"""
|
||||
return "".join([random.choice(list(self.heuristic_map.keys()))
|
||||
for _ in range(random.randrange(1, len(self.cp_points)))])
|
||||
|
||||
def convertor(self, component_list, individual):
|
||||
component_num = len(self.cp_feeders.keys())
|
||||
|
||||
cp_assign = [[] for _ in range(self.machine_num)]
|
||||
component_machine_assign = [[0 for _ in range(self.machine_num)] for _ in range(component_num)]
|
||||
machine_assign_counter = [0 for _ in range(self.machine_num)]
|
||||
|
||||
for idx, div_cp_idx in enumerate(component_list):
|
||||
h = individual[idx % len(individual)]
|
||||
cp_idx = self.cp_index[div_cp_idx]
|
||||
if self.cp_points[cp_idx] == 0:
|
||||
continue
|
||||
machine_config = defaultdict(int) # <20>ɱ<EFBFBD><C9B1><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ļ<EFBFBD><C4BB><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>-<2D><>Ƭͷ<C6AC><CDB7>
|
||||
if sum(component_machine_assign[cp_idx][:]) < self.cp_feeders[cp_idx]:
|
||||
for machine_index in range(self.machine_num):
|
||||
if component_machine_assign[cp_idx][machine_index] or machine_assign_counter[machine_index] < \
|
||||
self.predictor.max_placement_points:
|
||||
machine_config[machine_index] = self.line_config[machine_index].head_num
|
||||
machine_index = self.heuristic_map[h].apply(self.cp_points, self.cp_nozzle, cp_assign, machine_config)
|
||||
else:
|
||||
for machine_index in range(self.machine_num):
|
||||
if component_machine_assign[cp_idx][machine_index]:
|
||||
machine_config[machine_index] = self.line_config[machine_index].head_num
|
||||
machine_index = self.heuristic_map[h].apply(self.cp_points, self.cp_nozzle, cp_assign, machine_config)
|
||||
|
||||
cp_assign[machine_index].append(div_cp_idx)
|
||||
|
||||
if component_machine_assign[cp_idx][machine_index] == 0:
|
||||
machine_assign_counter[machine_index] += 1
|
||||
component_machine_assign[cp_idx][machine_index] = 1
|
||||
|
||||
return cp_assign
|
||||
|
||||
def crossover(self, parent1, parent2):
|
||||
"""
|
||||
Attempt to perform crossover between two chromosomes.
|
||||
:param parent1: The first parent.
|
||||
:param parent2: The second parent.
|
||||
:return: The two individuals after crossover has been performed.
|
||||
"""
|
||||
point1, point2 = random.randrange(len(parent1)), random.randrange(len(parent2))
|
||||
substr1, substr2 = parent1[point1:], parent2[point2:]
|
||||
offspring1, offspring2 = "".join((parent1[:point1], substr2)), "".join((parent2[:point2], substr1))
|
||||
return offspring1[:len(self.cp_points)], offspring2[:len(self.cp_points)]
|
||||
|
||||
def mutation(self, individual):
|
||||
"""
|
||||
Attempts to mutate the individual by replacing a random heuristic in the chromosome by a generated pattern.
|
||||
:param individual: The individual to mutate.
|
||||
:return: The mutated individual.
|
||||
"""
|
||||
pattern = list(individual)
|
||||
mutation_point = random.randrange(len(pattern))
|
||||
pattern[mutation_point] = self.generate_pattern()
|
||||
return ''.join(pattern)[:len(self.cp_points)]
|
||||
|
||||
def initialize(self, population_size):
|
||||
return [self.generate_pattern() for _ in range(population_size)]
|
||||
|
||||
def cal_ind_val(self, component_list, individual):
|
||||
machine_cp_assign = self.convertor(component_list, individual)
|
||||
component_number = len(self.cp_feeders)
|
||||
|
||||
machine_cp_points = [[0 for _ in range(component_number)] for _ in range(self.machine_num)]
|
||||
for machine_idx in range(self.machine_num):
|
||||
for idx in machine_cp_assign[machine_idx]:
|
||||
machine_cp_points[machine_idx][self.cp_index[idx]] += self.cp_points[idx]
|
||||
machine_cp_feeders = [[0 for _ in range(component_number)] for _ in range(self.machine_num)]
|
||||
|
||||
for cp_idx in range(component_number):
|
||||
if self.cp_points[cp_idx] == 0:
|
||||
continue
|
||||
feeder_nums = self.cp_feeders[cp_idx]
|
||||
for machine_idx in range(self.machine_num):
|
||||
if machine_cp_points[machine_idx][cp_idx]:
|
||||
machine_cp_feeders[machine_idx][cp_idx] = 1
|
||||
feeder_nums -= 1
|
||||
while feeder_nums > 0:
|
||||
assign_machine = None
|
||||
for machine_idx in range(self.machine_num):
|
||||
if machine_cp_points[machine_idx][cp_idx] == 0:
|
||||
continue
|
||||
if assign_machine is None:
|
||||
assign_machine = machine_idx
|
||||
continue
|
||||
if machine_cp_points[assign_machine][cp_idx] / machine_cp_feeders[assign_machine][cp_idx] \
|
||||
< machine_cp_points[machine_idx][cp_idx] / machine_cp_feeders[machine_idx][cp_idx]:
|
||||
assign_machine = machine_idx
|
||||
machine_cp_feeders[assign_machine][cp_idx] += 1
|
||||
feeder_nums -= 1
|
||||
nozzle_type = defaultdict(str)
|
||||
for idx, cp_idx in self.cp_index.items():
|
||||
nozzle_type[cp_idx] = self.cp_nozzle[idx]
|
||||
|
||||
obj = []
|
||||
for machine_idx in range(self.machine_num):
|
||||
div_cp_points, div_cp_nozzle = defaultdict(int), defaultdict(str)
|
||||
idx = 0
|
||||
for cp_idx in range(component_number):
|
||||
total_points = machine_cp_points[machine_idx][cp_idx]
|
||||
if total_points == 0:
|
||||
continue
|
||||
div_index = 0
|
||||
div_points = [total_points // machine_cp_feeders[machine_idx][cp_idx] for _ in
|
||||
range(machine_cp_feeders[machine_idx][cp_idx])]
|
||||
while sum(div_points) < total_points:
|
||||
div_points[div_index] += 1
|
||||
div_index += 1
|
||||
|
||||
for points in div_points:
|
||||
div_cp_points[idx] = points
|
||||
div_cp_nozzle[idx] = nozzle_type[cp_idx]
|
||||
idx += 1
|
||||
obj.append(self.predictor.eval(div_cp_points, div_cp_nozzle,
|
||||
self.board_width, self.board_height, self.line_config[machine_idx]))
|
||||
|
||||
return obj
|
||||
|
||||
def evaluate(self, assignment):
|
||||
partial_step_data, partial_part_data = defaultdict(pd.DataFrame), defaultdict(pd.DataFrame)
|
||||
for machine_index in range(self.machine_num):
|
||||
partial_step_data[machine_index] = pd.DataFrame(columns=self.step_data.columns)
|
||||
partial_part_data[machine_index] = self.part_data.copy(deep=True)
|
||||
partial_part_data[machine_index]['points'] = 0
|
||||
|
||||
# averagely assign available feeder
|
||||
for part_index, data in self.part_data.iterrows():
|
||||
feeder_limit = data.fdn
|
||||
feeder_points = [assignment[machine_index][part_index] for machine_index in range(self.machine_num)]
|
||||
if sum(feeder_points) == 0:
|
||||
continue
|
||||
|
||||
for machine_index in range(self.machine_num):
|
||||
partial_part_data[machine_index].loc[part_index, 'points'] = 0
|
||||
|
||||
for machine_index in range(self.machine_num):
|
||||
if feeder_points[machine_index] == 0:
|
||||
continue
|
||||
|
||||
partial_part_data[machine_index].loc[part_index, 'fdn'] = 1
|
||||
feeder_limit -= 1
|
||||
|
||||
while feeder_limit:
|
||||
assign_machine = None
|
||||
for machine_index in range(self.machine_num):
|
||||
if feeder_limit <= 0:
|
||||
break
|
||||
|
||||
if feeder_points[machine_index] == 0:
|
||||
continue
|
||||
|
||||
if assign_machine is None or feeder_points[machine_index] / \
|
||||
partial_part_data[machine_index].loc[part_index].fdn > feeder_points[
|
||||
assign_machine] / partial_part_data[assign_machine].loc[part_index].fdn:
|
||||
assign_machine = machine_index
|
||||
|
||||
assert assign_machine is not None
|
||||
partial_part_data[assign_machine].loc[part_index, 'fdn'] += 1
|
||||
|
||||
feeder_limit -= 1
|
||||
|
||||
for machine_index in range(self.machine_num):
|
||||
if feeder_points[machine_index] > 0:
|
||||
assert partial_part_data[machine_index].loc[part_index].fdn > 0 # assignment[machine_index][part_index]
|
||||
|
||||
# === assign placements ===
|
||||
part2idx = defaultdict(int)
|
||||
for idx, data in self.part_data.iterrows():
|
||||
part2idx[data.part] = idx
|
||||
|
||||
machine_average_pos = [[0, 0] for _ in range(self.machine_num)]
|
||||
machine_step_counter = [0 for _ in range(self.machine_num)]
|
||||
part_step_data = defaultdict(list)
|
||||
for _, data in self.step_data.iterrows():
|
||||
part_step_data[part2idx[data.part]].append(data)
|
||||
|
||||
multiple_component_index = []
|
||||
for part_index in range(len(self.part_data)):
|
||||
machine_assign_set = []
|
||||
for machine_index in range(self.machine_num):
|
||||
if assignment[machine_index][part_index]:
|
||||
machine_assign_set.append(machine_index)
|
||||
|
||||
if len(machine_assign_set) == 1:
|
||||
for data in part_step_data[part_index]:
|
||||
machine_index = machine_assign_set[0]
|
||||
|
||||
machine_average_pos[machine_index][0] += data.x
|
||||
machine_average_pos[machine_index][1] += data.y
|
||||
|
||||
machine_step_counter[machine_index] += 1
|
||||
|
||||
partial_part_data[machine_index].loc[part_index, 'points'] += 1
|
||||
partial_step_data[machine_index] = pd.concat(
|
||||
[partial_step_data[machine_index], pd.DataFrame(data).T])
|
||||
|
||||
elif len(machine_assign_set) > 1:
|
||||
multiple_component_index.append(part_index)
|
||||
|
||||
for machine_index in range(self.machine_num):
|
||||
if machine_step_counter[machine_index] == 0:
|
||||
continue
|
||||
machine_average_pos[machine_index][0] /= machine_step_counter[machine_index]
|
||||
machine_average_pos[machine_index][1] /= machine_step_counter[machine_index]
|
||||
|
||||
for part_index in multiple_component_index:
|
||||
for data in part_step_data[part_index]:
|
||||
idx = -1
|
||||
min_dist = None
|
||||
for machine_index in range(self.machine_num):
|
||||
if partial_part_data[machine_index].loc[part_index, 'points'] >= assignment[machine_index][part_index]:
|
||||
continue
|
||||
dist = (data.x - machine_average_pos[machine_index][0]) ** 2 + (
|
||||
data.y - machine_average_pos[machine_index][1]) ** 2
|
||||
if min_dist is None or dist < min_dist:
|
||||
min_dist, idx = dist, machine_index
|
||||
|
||||
assert idx >= 0
|
||||
machine_step_counter[idx] += 1
|
||||
machine_average_pos[idx][0] += (1 - 1 / machine_step_counter[idx]) * machine_average_pos[idx][0] \
|
||||
+ data.x / machine_step_counter[idx]
|
||||
machine_average_pos[idx][1] += (1 - 1 / machine_step_counter[idx]) * machine_average_pos[idx][1] \
|
||||
+ data.y / machine_step_counter[idx]
|
||||
|
||||
partial_part_data[idx].loc[part_index, 'points'] += 1
|
||||
partial_step_data[idx] = pd.concat([partial_step_data[idx], pd.DataFrame(data).T])
|
||||
|
||||
obj, result = [], []
|
||||
for machine_index in range(self.machine_num):
|
||||
rows = partial_part_data[machine_index]['points'] != 0
|
||||
partial_part_data[machine_index] = partial_part_data[machine_index][rows]
|
||||
|
||||
opt = self.base_opt(self.line_config[machine_index], partial_part_data[machine_index],
|
||||
partial_step_data[machine_index])
|
||||
opt.optimize(hinter=False)
|
||||
info = evaluation(self.line_config[machine_index], partial_part_data[machine_index],
|
||||
partial_step_data[machine_index], opt.result)
|
||||
obj.append(info.total_time)
|
||||
result.append(opt.result)
|
||||
|
||||
return max(obj), result
|
||||
|
||||
def optimize(self):
|
||||
# genetic-based hyper-heuristic
|
||||
crossover_rate, mutation_rate = 0.6, 0.1
|
||||
population_size, total_generation = 20, 50
|
||||
group_size = 10
|
||||
|
||||
best_val = np.inf
|
||||
|
||||
component_list = list(range(len(self.cp_points)))
|
||||
with tqdm(total=total_generation * group_size) as pbar:
|
||||
pbar.set_description('hyper-heuristic algorithm process for PCB assembly line balance')
|
||||
for _ in range(group_size):
|
||||
random.shuffle(component_list)
|
||||
new_population = []
|
||||
population = self.initialize(population_size)
|
||||
|
||||
# calculate fitness value
|
||||
pop_val = [max(self.cal_ind_val(component_list, individual)) for individual in population]
|
||||
|
||||
for _ in range(total_generation):
|
||||
population += new_population
|
||||
for individual in new_population:
|
||||
pop_val.append(max(self.cal_ind_val(component_list, individual)))
|
||||
|
||||
select_index = GenOpe.get_top_kth(pop_val, population_size, reverse=False)
|
||||
population = [population[idx] for idx in select_index]
|
||||
pop_val = [pop_val[idx] for idx in select_index]
|
||||
|
||||
# min-max convert
|
||||
max_val = max(pop_val)
|
||||
sel_pop_val = list(map(lambda v: max_val - v, pop_val))
|
||||
sum_pop_val = sum(sel_pop_val) + 1e-10
|
||||
sel_pop_val = [v / sum_pop_val + 1e-3 for v in sel_pop_val]
|
||||
|
||||
# crossover and mutation
|
||||
new_population = []
|
||||
for pop in range(population_size):
|
||||
if pop % 2 == 0 and np.random.random() < crossover_rate:
|
||||
index1 = GenOpe.roulette_wheel_selection(sel_pop_val)
|
||||
while True:
|
||||
index2 = GenOpe.roulette_wheel_selection(sel_pop_val)
|
||||
if index1 != index2:
|
||||
break
|
||||
|
||||
offspring1, offspring2 = self.crossover(population[index1], population[index2])
|
||||
|
||||
if np.random.random() < mutation_rate:
|
||||
offspring1 = self.mutation(offspring1)
|
||||
|
||||
if np.random.random() < mutation_rate:
|
||||
offspring2 = self.mutation(offspring2)
|
||||
|
||||
new_population.append(offspring1)
|
||||
new_population.append(offspring2)
|
||||
|
||||
pbar.update(1)
|
||||
|
||||
machine_assign = self.convertor(component_list, population[0])
|
||||
|
||||
assignment_result = [[0 for _ in range(len(self.part_data))] for _ in range(self.machine_num)]
|
||||
for machine_idx in range(self.machine_num):
|
||||
for idx in machine_assign[machine_idx]:
|
||||
assignment_result[machine_idx][self.cp_index[idx]] += self.cp_points[idx]
|
||||
|
||||
val, res = self.evaluate(assignment_result)
|
||||
if best_val is None or val < best_val:
|
||||
best_val = val
|
||||
self.result = res
|
||||
|
||||
Reference in New Issue
Block a user