优化器类的定义和实现

This commit is contained in:
2025-11-14 11:34:48 +08:00
parent a37ee38369
commit 79b09b2578
11 changed files with 4004 additions and 0 deletions

539
opt/hyper_heuristic.py Normal file
View File

@@ -0,0 +1,539 @@
from opt.predictor import NeuralPredictor
from opt.utils import *
from core.interface import *
from core.common import *
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'
class Heuristic:
@staticmethod
def apply(cp_points, cp_nozzle, cp_assign, config: defaultdict[int]):
return -1
class LeastPoints(Heuristic):
@staticmethod
def apply(cp_points, cp_nozzle, cp_assign, config: defaultdict[int]):
machine_index, machine_points = [], []
for index in config.keys():
if len(cp_assign[index]) == 0:
return index
machine_index.append(index)
machine_points.append(sum([cp_points[cp_idx] for cp_idx in cp_assign[index]]))
return machine_index[np.argmin(machine_points)]
class LeastNzTypes(Heuristic):
@staticmethod
def apply(cp_points, cp_nozzle, cp_assign, config: defaultdict[int]):
machine_index, machine_nozzle = [], []
for index in config.keys():
if len(cp_assign[index]) == 0:
return index
machine_index.append(index)
machine_nozzle.append([cp_nozzle[cp_idx] for cp_idx in cp_assign[index]])
index = np.argmin(
[len(set(nozzle)) + 1e-5 * sum(cp_points[c] for c in cp_assign[machine_idx]) for machine_idx, nozzle in
enumerate(machine_nozzle)])
return machine_index[index]
class LeastCpTypes(Heuristic):
@staticmethod
def apply(cp_points, cp_nozzle, cp_assign, config: defaultdict[int]):
machine_index, machine_types = [], []
for index in config.keys():
machine_index.append(index)
machine_types.append(len(cp_assign[index]) + 1e-5 * sum(cp_points[cp] for cp in cp_assign[index]))
return machine_index[np.argmin(machine_types)]
class LeastCpNzRatio(Heuristic):
@staticmethod
def apply(cp_points, cp_nozzle, cp_assign, config: defaultdict[int]):
machine_index, machine_nz_type, machine_cp_type = [], [], []
for index in config.keys():
if len(cp_assign[index]) == 0:
return index
machine_index.append(index)
machine_nz_type.append(set(cp_nozzle[cp_idx] for cp_idx in cp_assign[index]))
machine_cp_type.append(len(cp_assign[index]))
min_idx = np.argmin([(machine_cp_type[idx] + 1e-5 * sum(
cp_points[c] for c in cp_assign[machine_index[idx]])) / (len(machine_nz_type[idx]) + 1e-5) for idx in
range(len(machine_index))])
return machine_index[min_idx]
def nozzle_assignment(cp_points, cp_nozzle, cp_assign, head_num):
nozzle_points = defaultdict(int)
for cp_idx in cp_assign:
nozzle_points[cp_nozzle[cp_idx]] += cp_points[cp_idx]
while len(nozzle_points.keys()) > head_num:
del nozzle_points[min(nozzle_points.items(), key=lambda x: x[1])[0]]
sum_points = sum(nozzle_points.values())
nozzle_points = defaultdict(int, {k: v for k, v in nozzle_points.items() if v / sum_points >= 0.8 / head_num})
nozzle_heads = defaultdict(int, {k: 1 for k in nozzle_points.keys()})
while sum(nozzle_heads.values()) != head_num:
max_cycle_nozzle = None
for nozzle, head_cnt in nozzle_heads.items():
if max_cycle_nozzle is None or nozzle_points[nozzle] / head_cnt > nozzle_points[max_cycle_nozzle] / \
nozzle_heads[max_cycle_nozzle]:
max_cycle_nozzle = nozzle
assert max_cycle_nozzle is not None
nozzle_heads[max_cycle_nozzle] += 1
return nozzle_heads, nozzle_points
class LeastCycle(Heuristic):
@staticmethod
def apply(cp_points, cp_nozzle, cp_assign, config: defaultdict[int]):
machine_index, machine_cycle = [], []
for index, head_num in config.items():
assign_component = cp_assign[index]
if len(assign_component) == 0:
return index
nozzle_heads, nozzle_points = nozzle_assignment(cp_points, cp_nozzle, assign_component, head_num)
machine_index.append(index)
machine_cycle.append(
max(nozzle_points[nozzle] / head for nozzle, head in nozzle_heads.items()) + 1e-5 * sum(
cp_points[c] for c in cp_assign[index]))
return machine_index[np.argmin(machine_cycle)]
class LeastNzChange(Heuristic):
@staticmethod
def apply(cp_points, cp_nozzle, cp_assign, config: defaultdict[int]):
machine_index, machine_nozzle_change = [], []
for index, head_num in config.items():
assign_component = cp_assign[index]
if len(assign_component) == 0:
return index
heads_points = []
nozzle_heads, nozzle_points = nozzle_assignment(cp_points, cp_nozzle, assign_component, head_num)
for nozzle, head in nozzle_heads.items():
for _ in range(head):
heads_points.append(nozzle_points[nozzle] / nozzle_heads[nozzle])
machine_index.append(index)
machine_nozzle_change.append(np.std(heads_points) + 1e-5 * sum(cp_points[c] for c in cp_assign[index]))
return machine_index[np.argmin(machine_nozzle_change)]
class LeastPickup(Heuristic):
@staticmethod
def apply(cp_points, cp_nozzle, cp_assign, config: defaultdict[int]):
machine_index, machine_pick_up = [], []
for index, head_num in config.items():
assign_component = cp_assign[index]
if len(assign_component) == 0:
return index
nozzle_heads, nozzle_points = nozzle_assignment(cp_points, cp_nozzle, assign_component, head_num)
nozzle_level, nozzle_counter = defaultdict(int), defaultdict(int)
level_points = defaultdict(int)
for cp_idx in sorted(assign_component, key=lambda x: cp_points[x], reverse=True):
nozzle, points = cp_nozzle[cp_idx], cp_points[cp_idx]
if nozzle not in nozzle_heads.keys():
continue
if nozzle_counter[nozzle] and nozzle_counter[nozzle] % nozzle_heads[nozzle] == 0:
nozzle_level[nozzle] += 1
level = nozzle_level[nozzle]
level_points[level] = max(level_points[level], points)
nozzle_counter[nozzle] += 1
machine_index.append(index)
machine_pick_up.append(sum(points for points in level_points.values()) + 1e-5 * sum(
cp_points[idx] for idx in cp_assign[index]))
return machine_index[np.argmin(machine_pick_up)]
class HyperHeuristicOpt(BaseOpt):
def __init__(self, machine_num, part_data, step_data, feeder_data=None):
super().__init__(None, part_data, step_data, feeder_data)
self.line_config = [MachineConfig() for _ in range(machine_num)]
# self.base_opt = FeederPriorityOpt
self.base_opt = CellDivisionOpt
self.heuristic_map = {
'p': LeastPoints,
'n': LeastNzTypes,
'c': LeastCpTypes,
'r': LeastCpNzRatio,
'k': LeastCycle,
'g': LeastNzChange,
'u': LeastPickup,
}
self.machine_num = machine_num
self.predictor = NeuralPredictor()
self.cp_feeders = defaultdict(int)
self.cp_nozzle = defaultdict(str)
self.cp_points = defaultdict(int)
self.cp_index = defaultdict(int)
part_points = defaultdict(int)
for _, data in self.step_data.iterrows():
part_points[data.part] += 1
division_part = []
for _, data in self.part_data.iterrows():
division_part.extend([part_points[data.part] / data.fdn for _ in range(data.fdn)])
division_points = sum(division_part) / len(division_part)
idx = 0
for cp_idx, data in self.part_data.iterrows():
self.cp_feeders[cp_idx] = 1
division_data = copy.deepcopy(data)
division_data['points'] = part_points[data.part]
feeder_limit, total_points = division_data.fdn, division_data.points
if feeder_limit != 1:
feeder_limit = round(min(max(total_points // division_points * 1.5, feeder_limit), total_points))
# feeder_limit = total_points # С<><D0A1>ģ<EFBFBD><C4A3><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
surplus_points = total_points % feeder_limit
for _ in range(feeder_limit):
division_data.fdn, division_data.points = 1, math.floor(total_points / feeder_limit)
if surplus_points:
division_data.points += 1
surplus_points -= 1
self.cp_points[idx], self.cp_nozzle[idx] = division_data.points, division_data.nz
self.cp_index[idx] = cp_idx
idx += 1
self.board_width = self.step_data['x'].max() - self.step_data['x'].min()
self.board_height = self.step_data['y'].max() - self.step_data['y'].min()
def generate_pattern(self):
"""
Generates a random pattern.
:return: The generated pattern string.
"""
return "".join([random.choice(list(self.heuristic_map.keys()))
for _ in range(random.randrange(1, len(self.cp_points)))])
def convertor(self, component_list, individual):
component_num = len(self.cp_feeders.keys())
cp_assign = [[] for _ in range(self.machine_num)]
component_machine_assign = [[0 for _ in range(self.machine_num)] for _ in range(component_num)]
machine_assign_counter = [0 for _ in range(self.machine_num)]
for idx, div_cp_idx in enumerate(component_list):
h = individual[idx % len(individual)]
cp_idx = self.cp_index[div_cp_idx]
if self.cp_points[cp_idx] == 0:
continue
machine_config = defaultdict(int) # <20>ɱ<EFBFBD><C9B1><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ļ<EFBFBD><C4BB><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>-<2D><>Ƭͷ<C6AC><CDB7>
if sum(component_machine_assign[cp_idx][:]) < self.cp_feeders[cp_idx]:
for machine_index in range(self.machine_num):
if component_machine_assign[cp_idx][machine_index] or machine_assign_counter[machine_index] < \
self.predictor.max_placement_points:
machine_config[machine_index] = self.line_config[machine_index].head_num
machine_index = self.heuristic_map[h].apply(self.cp_points, self.cp_nozzle, cp_assign, machine_config)
else:
for machine_index in range(self.machine_num):
if component_machine_assign[cp_idx][machine_index]:
machine_config[machine_index] = self.line_config[machine_index].head_num
machine_index = self.heuristic_map[h].apply(self.cp_points, self.cp_nozzle, cp_assign, machine_config)
cp_assign[machine_index].append(div_cp_idx)
if component_machine_assign[cp_idx][machine_index] == 0:
machine_assign_counter[machine_index] += 1
component_machine_assign[cp_idx][machine_index] = 1
return cp_assign
def crossover(self, parent1, parent2):
"""
Attempt to perform crossover between two chromosomes.
:param parent1: The first parent.
:param parent2: The second parent.
:return: The two individuals after crossover has been performed.
"""
point1, point2 = random.randrange(len(parent1)), random.randrange(len(parent2))
substr1, substr2 = parent1[point1:], parent2[point2:]
offspring1, offspring2 = "".join((parent1[:point1], substr2)), "".join((parent2[:point2], substr1))
return offspring1[:len(self.cp_points)], offspring2[:len(self.cp_points)]
def mutation(self, individual):
"""
Attempts to mutate the individual by replacing a random heuristic in the chromosome by a generated pattern.
:param individual: The individual to mutate.
:return: The mutated individual.
"""
pattern = list(individual)
mutation_point = random.randrange(len(pattern))
pattern[mutation_point] = self.generate_pattern()
return ''.join(pattern)[:len(self.cp_points)]
def initialize(self, population_size):
return [self.generate_pattern() for _ in range(population_size)]
def cal_ind_val(self, component_list, individual):
machine_cp_assign = self.convertor(component_list, individual)
component_number = len(self.cp_feeders)
machine_cp_points = [[0 for _ in range(component_number)] for _ in range(self.machine_num)]
for machine_idx in range(self.machine_num):
for idx in machine_cp_assign[machine_idx]:
machine_cp_points[machine_idx][self.cp_index[idx]] += self.cp_points[idx]
machine_cp_feeders = [[0 for _ in range(component_number)] for _ in range(self.machine_num)]
for cp_idx in range(component_number):
if self.cp_points[cp_idx] == 0:
continue
feeder_nums = self.cp_feeders[cp_idx]
for machine_idx in range(self.machine_num):
if machine_cp_points[machine_idx][cp_idx]:
machine_cp_feeders[machine_idx][cp_idx] = 1
feeder_nums -= 1
while feeder_nums > 0:
assign_machine = None
for machine_idx in range(self.machine_num):
if machine_cp_points[machine_idx][cp_idx] == 0:
continue
if assign_machine is None:
assign_machine = machine_idx
continue
if machine_cp_points[assign_machine][cp_idx] / machine_cp_feeders[assign_machine][cp_idx] \
< machine_cp_points[machine_idx][cp_idx] / machine_cp_feeders[machine_idx][cp_idx]:
assign_machine = machine_idx
machine_cp_feeders[assign_machine][cp_idx] += 1
feeder_nums -= 1
nozzle_type = defaultdict(str)
for idx, cp_idx in self.cp_index.items():
nozzle_type[cp_idx] = self.cp_nozzle[idx]
obj = []
for machine_idx in range(self.machine_num):
div_cp_points, div_cp_nozzle = defaultdict(int), defaultdict(str)
idx = 0
for cp_idx in range(component_number):
total_points = machine_cp_points[machine_idx][cp_idx]
if total_points == 0:
continue
div_index = 0
div_points = [total_points // machine_cp_feeders[machine_idx][cp_idx] for _ in
range(machine_cp_feeders[machine_idx][cp_idx])]
while sum(div_points) < total_points:
div_points[div_index] += 1
div_index += 1
for points in div_points:
div_cp_points[idx] = points
div_cp_nozzle[idx] = nozzle_type[cp_idx]
idx += 1
obj.append(self.predictor.eval(div_cp_points, div_cp_nozzle,
self.board_width, self.board_height, self.line_config[machine_idx]))
return obj
def evaluate(self, assignment):
partial_step_data, partial_part_data = defaultdict(pd.DataFrame), defaultdict(pd.DataFrame)
for machine_index in range(self.machine_num):
partial_step_data[machine_index] = pd.DataFrame(columns=self.step_data.columns)
partial_part_data[machine_index] = self.part_data.copy(deep=True)
partial_part_data[machine_index]['points'] = 0
# averagely assign available feeder
for part_index, data in self.part_data.iterrows():
feeder_limit = data.fdn
feeder_points = [assignment[machine_index][part_index] for machine_index in range(self.machine_num)]
if sum(feeder_points) == 0:
continue
for machine_index in range(self.machine_num):
partial_part_data[machine_index].loc[part_index, 'points'] = 0
for machine_index in range(self.machine_num):
if feeder_points[machine_index] == 0:
continue
partial_part_data[machine_index].loc[part_index, 'fdn'] = 1
feeder_limit -= 1
while feeder_limit:
assign_machine = None
for machine_index in range(self.machine_num):
if feeder_limit <= 0:
break
if feeder_points[machine_index] == 0:
continue
if assign_machine is None or feeder_points[machine_index] / \
partial_part_data[machine_index].loc[part_index].fdn > feeder_points[
assign_machine] / partial_part_data[assign_machine].loc[part_index].fdn:
assign_machine = machine_index
assert assign_machine is not None
partial_part_data[assign_machine].loc[part_index, 'fdn'] += 1
feeder_limit -= 1
for machine_index in range(self.machine_num):
if feeder_points[machine_index] > 0:
assert partial_part_data[machine_index].loc[part_index].fdn > 0 # assignment[machine_index][part_index]
# === assign placements ===
part2idx = defaultdict(int)
for idx, data in self.part_data.iterrows():
part2idx[data.part] = idx
machine_average_pos = [[0, 0] for _ in range(self.machine_num)]
machine_step_counter = [0 for _ in range(self.machine_num)]
part_step_data = defaultdict(list)
for _, data in self.step_data.iterrows():
part_step_data[part2idx[data.part]].append(data)
multiple_component_index = []
for part_index in range(len(self.part_data)):
machine_assign_set = []
for machine_index in range(self.machine_num):
if assignment[machine_index][part_index]:
machine_assign_set.append(machine_index)
if len(machine_assign_set) == 1:
for data in part_step_data[part_index]:
machine_index = machine_assign_set[0]
machine_average_pos[machine_index][0] += data.x
machine_average_pos[machine_index][1] += data.y
machine_step_counter[machine_index] += 1
partial_part_data[machine_index].loc[part_index, 'points'] += 1
partial_step_data[machine_index] = pd.concat(
[partial_step_data[machine_index], pd.DataFrame(data).T])
elif len(machine_assign_set) > 1:
multiple_component_index.append(part_index)
for machine_index in range(self.machine_num):
if machine_step_counter[machine_index] == 0:
continue
machine_average_pos[machine_index][0] /= machine_step_counter[machine_index]
machine_average_pos[machine_index][1] /= machine_step_counter[machine_index]
for part_index in multiple_component_index:
for data in part_step_data[part_index]:
idx = -1
min_dist = None
for machine_index in range(self.machine_num):
if partial_part_data[machine_index].loc[part_index, 'points'] >= assignment[machine_index][part_index]:
continue
dist = (data.x - machine_average_pos[machine_index][0]) ** 2 + (
data.y - machine_average_pos[machine_index][1]) ** 2
if min_dist is None or dist < min_dist:
min_dist, idx = dist, machine_index
assert idx >= 0
machine_step_counter[idx] += 1
machine_average_pos[idx][0] += (1 - 1 / machine_step_counter[idx]) * machine_average_pos[idx][0] \
+ data.x / machine_step_counter[idx]
machine_average_pos[idx][1] += (1 - 1 / machine_step_counter[idx]) * machine_average_pos[idx][1] \
+ data.y / machine_step_counter[idx]
partial_part_data[idx].loc[part_index, 'points'] += 1
partial_step_data[idx] = pd.concat([partial_step_data[idx], pd.DataFrame(data).T])
obj, result = [], []
for machine_index in range(self.machine_num):
rows = partial_part_data[machine_index]['points'] != 0
partial_part_data[machine_index] = partial_part_data[machine_index][rows]
opt = self.base_opt(self.line_config[machine_index], partial_part_data[machine_index],
partial_step_data[machine_index])
opt.optimize(hinter=False)
info = evaluation(self.line_config[machine_index], partial_part_data[machine_index],
partial_step_data[machine_index], opt.result)
obj.append(info.total_time)
result.append(opt.result)
return max(obj), result
def optimize(self):
# genetic-based hyper-heuristic
crossover_rate, mutation_rate = 0.6, 0.1
population_size, total_generation = 20, 50
group_size = 10
best_val = np.inf
component_list = list(range(len(self.cp_points)))
with tqdm(total=total_generation * group_size) as pbar:
pbar.set_description('hyper-heuristic algorithm process for PCB assembly line balance')
for _ in range(group_size):
random.shuffle(component_list)
new_population = []
population = self.initialize(population_size)
# calculate fitness value
pop_val = [max(self.cal_ind_val(component_list, individual)) for individual in population]
for _ in range(total_generation):
population += new_population
for individual in new_population:
pop_val.append(max(self.cal_ind_val(component_list, individual)))
select_index = GenOpe.get_top_kth(pop_val, population_size, reverse=False)
population = [population[idx] for idx in select_index]
pop_val = [pop_val[idx] for idx in select_index]
# min-max convert
max_val = max(pop_val)
sel_pop_val = list(map(lambda v: max_val - v, pop_val))
sum_pop_val = sum(sel_pop_val) + 1e-10
sel_pop_val = [v / sum_pop_val + 1e-3 for v in sel_pop_val]
# crossover and mutation
new_population = []
for pop in range(population_size):
if pop % 2 == 0 and np.random.random() < crossover_rate:
index1 = GenOpe.roulette_wheel_selection(sel_pop_val)
while True:
index2 = GenOpe.roulette_wheel_selection(sel_pop_val)
if index1 != index2:
break
offspring1, offspring2 = self.crossover(population[index1], population[index2])
if np.random.random() < mutation_rate:
offspring1 = self.mutation(offspring1)
if np.random.random() < mutation_rate:
offspring2 = self.mutation(offspring2)
new_population.append(offspring1)
new_population.append(offspring2)
pbar.update(1)
machine_assign = self.convertor(component_list, population[0])
assignment_result = [[0 for _ in range(len(self.part_data))] for _ in range(self.machine_num)]
for machine_idx in range(self.machine_num):
for idx in machine_assign[machine_idx]:
assignment_result[machine_idx][self.cp_index[idx]] += self.cp_points[idx]
val, res = self.evaluate(assignment_result)
if best_val is None or val < best_val:
best_val = val
self.result = res