修改分支定界搜索过程中,状态未更新导致的找不到最优解的问题
This commit is contained in:
145
src/solver.cpp
145
src/solver.cpp
@@ -24,11 +24,14 @@ struct Node
|
||||
};
|
||||
|
||||
LinSolver::LinSolver() :
|
||||
obj_(0),
|
||||
rtn_(LOADED),
|
||||
cn(0),
|
||||
bn(1),
|
||||
sense(0),
|
||||
vars(nullptr)
|
||||
{
|
||||
|
||||
}
|
||||
|
||||
sv::LinSolver::~LinSolver()
|
||||
@@ -40,7 +43,7 @@ sv::LinSolver::LinSolver(const LinSolver& solver)
|
||||
: vars(nullptr),
|
||||
cn(solver.cn),
|
||||
bn(solver.bn),
|
||||
mt(solver.mt),
|
||||
table(solver.table),
|
||||
basic(solver.basic),
|
||||
rtn_(solver.rtn_),
|
||||
obj_(solver.obj_),
|
||||
@@ -71,8 +74,7 @@ LinSolver& sv::LinSolver::operator=(const LinSolver& solver)
|
||||
vars[i] = solver.vars[i]; // <20><EFBFBD><EEBFBD>
|
||||
}
|
||||
}
|
||||
|
||||
mt = solver.mt;
|
||||
table = solver.table;
|
||||
cn = solver.cn, bn = solver.bn;
|
||||
basic = solver.basic;
|
||||
rtn_ = solver.rtn_;
|
||||
@@ -91,9 +93,6 @@ Var* LinSolver::addVars(int num, VarType type)
|
||||
vars[c].type = type;
|
||||
}
|
||||
|
||||
//for (int i = 0; i < cn; i++) {
|
||||
// *(vars + i) = *(old + i);
|
||||
//}
|
||||
memcpy(vars, old, sizeof(Var) * cn);
|
||||
delete[] old;
|
||||
cn += num;
|
||||
@@ -110,14 +109,14 @@ void LinSolver::addConstr(const Expr& expr, ConstrOper sense, double rhs)
|
||||
{
|
||||
if (sense == ConstrOper::LESS_EQUAL) {
|
||||
bn++;
|
||||
mt.push_back(vector<double>(1, rhs - expr.constant));
|
||||
mt.back().insert(mt.back().end(), expr.coeffs.begin(), expr.coeffs.end());
|
||||
table.push_back(vector<double>(1, rhs - expr.constant));
|
||||
table.back().insert(table.back().end(), expr.coeffs.begin(), expr.coeffs.end());
|
||||
}
|
||||
else if (sense == ConstrOper::GREATER_EQUAL) {
|
||||
bn++;
|
||||
mt.push_back(vector<double>(1, expr.constant - rhs));
|
||||
table.push_back(vector<double>(1, expr.constant - rhs));
|
||||
for (int coeff : expr.coeffs) {
|
||||
mt.back().push_back(-coeff);
|
||||
table.back().push_back(-coeff);
|
||||
}
|
||||
}
|
||||
else {
|
||||
@@ -125,8 +124,8 @@ void LinSolver::addConstr(const Expr& expr, ConstrOper sense, double rhs)
|
||||
addConstr(expr, ConstrOper::GREATER_EQUAL, rhs);
|
||||
}
|
||||
|
||||
for (int c = mt.back().size(); c <= cn; c++) {
|
||||
mt.back().push_back(0);
|
||||
for (int c = table.back().size(); c <= cn; c++) {
|
||||
table.back().push_back(0);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -134,25 +133,25 @@ void LinSolver::setObjective(Expr obje, int _sense)
|
||||
{
|
||||
assert(_sense == 1 || _sense == -1);
|
||||
if (sense == 0) {
|
||||
mt.insert(mt.begin(), obje.coeffs);
|
||||
mt.front().insert(mt.front().begin(), -obje.constant);
|
||||
table.insert(table.begin(), obje.coeffs);
|
||||
table.front().insert(table.front().begin(), -obje.constant);
|
||||
for (int c = obje.coeffs.size() + 1; c <= cn; c++) {
|
||||
mt.front().push_back(0);
|
||||
table.front().push_back(0);
|
||||
}
|
||||
}
|
||||
else {
|
||||
mt.front().front() = -obje.constant;
|
||||
for (int c = 0; c < cn; c++) {
|
||||
if (c < obje.coeffs.size()) {
|
||||
mt.front()[c + 1] = obje.coeffs[c];
|
||||
table.front().front() = -obje.constant;
|
||||
for (int col = 0; col < cn; col++) {
|
||||
if (col < obje.coeffs.size()) {
|
||||
table.front().at(col + 1) = obje.coeffs.at(col);
|
||||
}
|
||||
else {
|
||||
mt.front()[c] = 0;
|
||||
table.front().at(col) = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
for (int i = 0; i < mt.front().size(); i++) {
|
||||
mt.front()[i] = _sense * mt.front()[i];
|
||||
for (int row = 0; row < table.front().size(); row++) {
|
||||
table.front().at(row) = _sense * table.front().at(row);
|
||||
}
|
||||
sense = _sense;
|
||||
}
|
||||
@@ -160,27 +159,29 @@ void LinSolver::setObjective(Expr obje, int _sense)
|
||||
rtn LinSolver::optimize()
|
||||
{
|
||||
assert(sense);
|
||||
mt_cvt = mt;
|
||||
ope_table = table;
|
||||
rtn_ = LOADED;
|
||||
rtn_ = feasible_solution();
|
||||
if (rtn_ == LOADED) {
|
||||
obj_ = _simplex();
|
||||
}
|
||||
|
||||
cn = mt_cvt.front().size() - bn;
|
||||
for (int row = 1; row < bn; row++) {
|
||||
if (basic[row - 1] - 1 <= cn) {
|
||||
vars[basic[row - 1] - 1].val = mt_cvt[row].front();
|
||||
if (rtn_ == OPTIMAL) {
|
||||
cn = ope_table.front().size() - bn;
|
||||
for (int row = 1; row < bn; row++) {
|
||||
if (basic.at(row - 1) - 1 < cn) {
|
||||
vars[basic.at(row - 1) - 1].val = ope_table.at(row).front();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return rtn_;
|
||||
}
|
||||
|
||||
void LinSolver::print()
|
||||
{
|
||||
for (size_t i = 0; i < mt_cvt.size(); i++) {
|
||||
for (size_t j = 0; j < mt_cvt[0].size(); j++) {
|
||||
cout << mt_cvt[i][j] << "\t";
|
||||
for (size_t row = 0; row < ope_table.size(); row++) {
|
||||
for (size_t col = 0; col < ope_table.front().size(); col++) {
|
||||
cout << ope_table.at(row).at(col) << "\t";
|
||||
}
|
||||
cout << endl;
|
||||
}
|
||||
@@ -202,14 +203,11 @@ rtn Model::optimize()
|
||||
|
||||
std::stack<Node> list_;
|
||||
|
||||
Node incumbent_node, root_node;
|
||||
root_node.solver = solver;
|
||||
root_node.upper_bound = global_upper_bound, root_node.lower_bound = global_lower_bound;
|
||||
Node root_node(solver, 0, solver.obj_);
|
||||
Node incumbent_node = root_node;
|
||||
|
||||
list_.push(root_node);
|
||||
int cnt = 0;
|
||||
while (list_.size() && global_upper_bound - global_lower_bound > 1e-10) {
|
||||
cout << ++cnt << endl;
|
||||
Node current_node = list_.top();
|
||||
list_.pop();
|
||||
current_node.solver.optimize();
|
||||
@@ -310,18 +308,18 @@ double LinSolver::_simplex()
|
||||
}
|
||||
_gaussian(t);
|
||||
}
|
||||
return obj_ = mt_cvt.front().front();
|
||||
return obj_ = ope_table.front().front();
|
||||
}
|
||||
|
||||
rtn LinSolver::feasible_solution()
|
||||
{
|
||||
for (int row = 1; row < bn; row++) {
|
||||
mt_cvt.front().push_back(0);
|
||||
ope_table.front().push_back(0);
|
||||
for (int col = 1; col < bn; col++) {
|
||||
mt_cvt[row].push_back(col == row ? 1 : 0);
|
||||
ope_table.at(row).push_back(col == row ? 1 : 0);
|
||||
}
|
||||
}
|
||||
cn = mt_cvt.front().size();
|
||||
cn = ope_table.front().size();
|
||||
basic.clear();
|
||||
for (size_t i = 1; i < bn; i++) {
|
||||
basic.push_back(cn - bn + i);
|
||||
@@ -330,7 +328,7 @@ rtn LinSolver::feasible_solution()
|
||||
// === <20>жϳ<D0B6>ʼ<EFBFBD><CABC><EFBFBD>Ƿ<EFBFBD>Ϊ<EFBFBD><CEAA><EFBFBD>н<EFBFBD> ===
|
||||
bool initial_feasible = true;
|
||||
for (int row = 1; row < bn; row++) {
|
||||
if (mt_cvt[row].front() < 0) {
|
||||
if (ope_table.at(row).front() < 0) {
|
||||
initial_feasible = false;
|
||||
break;
|
||||
}
|
||||
@@ -338,65 +336,64 @@ rtn LinSolver::feasible_solution()
|
||||
|
||||
// === <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʼ<EFBFBD><CABC><EFBFBD>н<EFBFBD> ===
|
||||
if (!initial_feasible) {
|
||||
vector<double> coeff = mt_cvt.front();
|
||||
mt_cvt.front() = vector<double>(cn, .0);
|
||||
mt_cvt.front().push_back(1);
|
||||
vector<double> coeff = ope_table.front();
|
||||
ope_table.front() = vector<double>(cn, .0);
|
||||
ope_table.front().push_back(1);
|
||||
pair<size_t, size_t> t = { -1 ,cn };
|
||||
|
||||
for (int row = 1; row < bn; row++) {
|
||||
mt_cvt[row].push_back(-1);
|
||||
if (t.first == -1 || mt_cvt[row].front() < mt_cvt[t.first].front()) {
|
||||
ope_table.at(row).push_back(-1);
|
||||
if (t.first == -1 || ope_table.at(row).front() < ope_table.at(t.first).front()) {
|
||||
t.first = row;
|
||||
}
|
||||
}
|
||||
|
||||
_gaussian(t);
|
||||
if (fabs(_simplex()) > 1e-10) {
|
||||
rtn_ = INFEASIBLE;
|
||||
return rtn_;
|
||||
return rtn_ = INFEASIBLE;
|
||||
}
|
||||
|
||||
rtn_ = LOADED;
|
||||
// if the x0 in B, we should pivot it.
|
||||
auto iter = find(basic.begin(), basic.end(), cn);
|
||||
if (iter != basic.end()) {
|
||||
for (int col = 1; col < mt_cvt.front().size(); col++) {
|
||||
if (fabs(mt_cvt.front()[col]) > 1e-10) {
|
||||
for (int col = 1; col < ope_table.front().size(); col++) {
|
||||
if (fabs(ope_table.front().at(col)) > 1e-10) {
|
||||
t = make_pair(iter - basic.begin() + 1, col);
|
||||
_gaussian(t);
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
for (int row = 0; row < bn; row++) {
|
||||
mt_cvt[row].pop_back();
|
||||
ope_table.at(row).pop_back();
|
||||
}
|
||||
|
||||
// recover the coefficient line
|
||||
for (int col = 0; col < cn; col++) {
|
||||
mt_cvt.front()[col] = coeff[col];
|
||||
ope_table.front().at(col) = coeff.at(col);
|
||||
}
|
||||
for (int row = 1; row <= basic.size(); row++) {
|
||||
int norm = mt_cvt.front()[basic[row - 1]];
|
||||
int norm = ope_table.front().at(basic.at(row - 1));
|
||||
for (int col = 0; col < cn; col++) {
|
||||
mt_cvt.front()[col] -= norm * mt_cvt[row][col];
|
||||
ope_table.front().at(col) -= norm * ope_table.at(row).at(col);
|
||||
}
|
||||
}
|
||||
}
|
||||
return LOADED;
|
||||
return rtn_;
|
||||
}
|
||||
|
||||
rtn LinSolver::_pivot(pair<size_t, size_t>& p)
|
||||
{
|
||||
p = make_pair(0, 0);
|
||||
double cmin = INT_MAX;
|
||||
vector<double> coef = mt_cvt.front();
|
||||
vector<double> coef = ope_table.front();
|
||||
|
||||
// === <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ԫ<EFBFBD><D4AA><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Сֵ ===
|
||||
for (size_t i = 1; i < coef.size(); i++) {
|
||||
if (cmin > coef[i] && find(basic.begin(), basic.end(), i) == basic.end()) {
|
||||
cmin = coef[i];
|
||||
p.second = i;
|
||||
for (size_t col = 1; col < coef.size(); col++) {
|
||||
if (cmin > coef.at(col) && find(basic.begin(), basic.end(), col) == basic.end()) {
|
||||
cmin = coef.at(col);
|
||||
p.second = col;
|
||||
}
|
||||
}
|
||||
if (cmin >= 0) {
|
||||
@@ -404,8 +401,8 @@ rtn LinSolver::_pivot(pair<size_t, size_t>& p)
|
||||
}
|
||||
double bmin = INT_MAX;
|
||||
for (size_t row = 1; row < bn; row++) {
|
||||
double tmp = mt_cvt[row].front() / mt_cvt[row][p.second];
|
||||
if (mt_cvt[row][p.second] > 0 && bmin > tmp) {
|
||||
double tmp = ope_table.at(row).front() / ope_table.at(row).at(p.second);
|
||||
if (ope_table.at(row).at(p.second) > 0 && bmin > tmp) {
|
||||
bmin = tmp;
|
||||
p.first = row;
|
||||
}
|
||||
@@ -416,12 +413,12 @@ rtn LinSolver::_pivot(pair<size_t, size_t>& p)
|
||||
}
|
||||
|
||||
for (auto iter = basic.begin(); iter != basic.end(); iter++) {
|
||||
if (mt_cvt[p.first][*iter] != 0) {
|
||||
if (ope_table.at(p.first).at(*iter) != 0) {
|
||||
*iter = p.second;
|
||||
break;
|
||||
}
|
||||
}
|
||||
assert(basic[p.first - 1] == p.second);
|
||||
assert(basic.at(p.first - 1) == p.second);
|
||||
return PIVOT;
|
||||
}
|
||||
|
||||
@@ -430,9 +427,9 @@ void LinSolver::_gaussian(pair<size_t, size_t> p)
|
||||
size_t x = p.first, y = p.second;
|
||||
|
||||
// === <20><><EFBFBD>й<EFBFBD>һ<EFBFBD><D2BB> ===
|
||||
double norm = mt_cvt[x][y];
|
||||
for (size_t col = 0; col < mt_cvt[x].size(); col++) {
|
||||
mt_cvt[x][col] /= norm;
|
||||
double norm = ope_table.at(x).at(y);
|
||||
for (size_t col = 0; col < ope_table.at(x).size(); col++) {
|
||||
ope_table.at(x).at(col) /= norm;
|
||||
}
|
||||
|
||||
// === <20><><EFBFBD><EFBFBD><EFBFBD>б任 ===
|
||||
@@ -440,13 +437,13 @@ void LinSolver::_gaussian(pair<size_t, size_t> p)
|
||||
if (row == x) {
|
||||
continue;
|
||||
}
|
||||
if (mt_cvt[row][y] != 0) {
|
||||
double norm = mt_cvt[row][y];
|
||||
for (size_t col = 0; col < mt_cvt[x].size(); col++) {
|
||||
mt_cvt[row][col] = mt_cvt[row][col] - norm * mt_cvt[x][col];
|
||||
if (ope_table.at(row).at(y) != 0) {
|
||||
double norm = ope_table.at(row).at(y);
|
||||
for (size_t col = 0; col < ope_table.at(x).size(); col++) {
|
||||
ope_table.at(row).at(col) = ope_table.at(row).at(col) - norm * ope_table.at(x).at(col);
|
||||
}
|
||||
}
|
||||
}
|
||||
basic[x - 1] = y; // <20><>Ԫ
|
||||
basic.at(x - 1) = y; // <20><>Ԫ
|
||||
}
|
||||
|
||||
|
Reference in New Issue
Block a user