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Abstract— The optimization of printed circuit board as-
sembly (PCBA) for a beam head placement machine is a
multivariable and multiconstraint combinatorial problem.
Current techniques falter in solving a variety of PCBA prob-
lems since heuristic algorithms lack theoretical guarantees
of optimality, and mathematical modeling methods have
high computational complexity for the whole problem. This
article proposes a novel two-phase optimization for PCBA,
integrating the advantages of mathematical modeling with
heuristic algorithms. We divide the problem into the head
task assignment and the placement route schedule. For the
former, an effective integer linear programming (ILP) model
with component partition is proposed, encompassing key
efficiency-influencing factors. A recursive heuristic-based
initial solution speeds up the solving convergence, while
the reduction strategies enhance model solvability. For
the placement route schedule, a tailored greedy algorithm
yields high-quality solutions, leveraging the results of the
model, and an aggregated route relink heuristic (ARRH)
does further optimization. Additionally, we propose selec-
tion criteria for the solution pool of the model to pre-
evaluate the placement movement, which builds the con-
nection between the two phases. Finally, we validate the
performance of the two-phase optimization, which provides
an average efficiency improvement of 8.06%∼24.32% com-
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I. INTRODUCTION

SURFACE mount technology is essential to the electronic
manufacturing industry. The need for higher efficiency

in production lines has become more acute in electronic
industries with the expansion of the manufacturing sector. The
placement machines utilized to execute automated component
surface assembly operations are the most crucial equipment
in integrated printed circuit board assembly (PCBA) lines [1].
Developing surface assembly equipment is a systematic project
involving multiple subjects, including visual recognition and
positioning, advanced motion control, scheduling techniques,
etc. In this article, we study the scheduling optimization tech-
niques of the PCBA process using mathematical programming
and heuristic algorithms.

The mechanical design of the beam head placement ma-
chines comprises placement heads, feeders, nozzles, and other
connected accessories. They collaborate in three steps of the
assembly process: component pickup, inspection, and place-
ment. The heads are equipped with appropriate nozzle types
for various types of components and are designed for pickup
and placement operations. The components are picked up
from feeder slots by linear aligned heads simultaneously and
placed in the predetermined PCB pads, which consist of a
pick-and-place (PAP) cycle. When the nozzle on the head is
incompatible with the component type picked up from the
feeders, a nozzle change operation is done at the auto nozzle
changer.

Early PCBA optimization research focusfocuses on mod-
eling simple machine types, such as single-head sequential
pick-and-place machines [2] and multi-heads for single com-
ponent type placement machines [3]. The integrated model for
PCBA optimization has beencharacteristics that combineas a
combination of the models for several sub-problems. Studies
in [4] formulate a model in which the multi-heads case solves
component sequencing, feeder assignment, and nozzle assign-
ment simultaneously. In contrast, studies in [2] solve the sub-
problems of component sequencing and feeder arrangement as
a hierarchical multi-objective optimization problem.
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The high complexity of the problem makes decomposition
modeling necessary. As an extension of [3] for the multi-heads
and multi-component types of case, a two-stage mixed integer
programming model is proposed in [5] to optimize the nozzle
component assignment and assembly route schedule, respec-
tively. In [6], the problem is decomposed into hierarchical
mixed integer pickup and placement models. Studies in [7]
present a problem decomposition approach for component
machine allocation and PCB sequence problems, which are
modeled separately. Moreover, a few of the studies model the
sub-problems therein, such as the nozzle assignment model
in [8], [9] and the feeder module change model in [10].
The edge-based and route-based models have been developed
in [11] for placement route schedules, and the branch-and-
price method with effective branch rules solves the latter.

A series of techniques are applied in the modeling process to
enhance its solvability. Studies in [12] present a mathematical
model based on pickup groups to reduce the scale of the
model, whereas studies in [13] propose an aggregated integer
programming based on batches of components. In [14], an
augmented ε method is proposed to optimize multiple sub-
objectives by the curve matching method.

The large space of the solutions leads to the design of
improved heuristics [15], and mathematical models typically
are combined with them for higher computing efficiency.
Hybrid genetic [12], [16], [17], tabu search [3], [18], par-
ticle swarm [19], frog leaping [20], [21] and other intel-
ligent optimization algorithms are integrated to the PCBA
optimization. Additionally, multiobjective optimization is also
integrated with intelligent optimization; for instance, studies
in [14] present a multiobjective particle swarm optimization,
and studies in [22] integrate intelligent optimization with
curve matching techniques. A cluster-based heuristic is applied
to group components based on their properties with single
gantry [23] and dual gantry [24] placement machines to
optimize the pick-and-place sequence.

In this article, the proposed two-phase optimization method
combines integer linear programming (ILP) models and
heuristic algorithms, and its framework is shown in Fig. 1.
In the first phase, we extract the primary objectives of the
ILP model for the head task assignment, which is related
to the pickup route. model, which guarantees high-quality
solutions because the objective of the ILP model covers the
major metrics that affecting assembly efficiency A series of
techniques are proposed to improve the efficiency of model
solving. To improve the quality of the overall solution, we
further select the solutions of the model from the pool of the
first phase. As there is insufficient information regarding the
points and sequence of heads place, a pre-evaluation heuristic
provides a selection criterion based on the estimated assembly
path. In the second phase, we solve the placement route
schedule problem of the assembly process using heuristic
methods. The combination of mathematical modeling and
heuristics ensures the high-quality of the major sub-objectives
while taking into account the overall solving efficiency of the
algorithms.

The main contributions of this article are summarized as
follows:

Start

Model Pre-Processing

ILP Model Solver

Greedy Route Schedule Heuristic

Aggregated Route Relink Heuristic

End

Placement Route 

      Schedule

   Pick-up Route 

       Schedule

Solution Pool Selection

Fig. 1. The framework of two-phase optimization with ILP model and
heuristic algorithms.

1) An effective integer linear model for the PCB assem-
bly process is proposed to optimize the primary sub-
objectives of the assembly process. The model pre-
processing techniques are studied to improve the search
efficiency.

2) A placement greedy route schedule the linearly aligned
heads is proposed for with the constraint of the head
task assignment, and the solution is further optimized by
a route relink heuristic, which outperforms mainstream
methods.

3) A pre-evaluation selection criterion is present for the one
from the solution pool, which overcomes the drawbacks
that modeling without movement terms may degrade the
quality of the solution.

The rest of this article is organized as follows. In Sections II
and III, respectively, each phase of the proposed framework
is discussed. An ILP model based on the analysis results of
the assembly process and its solving techniques is proposed
in Section II. Section II discusses the assembly problem, and
presents an integer linear model with solving techniques. The
placement route schedule heuristics with determined greedy
and random relink heuristic algorithms are present in Sec-
tion III. In Section IV, we give the experimental comparative
results of the proposed two-phase optimizationwith a commer-
cial optimizer Gurobi [25]. Section V concludes this article.

II. HEAD TASK ILP MODEL FORMULATION

A. PCB Assembly Problem

The PCBA process comprises several aspects. The pick-and-
place operations, nozzle change operations, and movements
are the most critical aspects that affect its efficiency. The
mechanism of beam heads is specially designed for simulta-
neous pickup operations to improve efficiency, whereas the
placement operation time is determined by the PCB data.
The heads can assemble different components by changing
a compatible nozzle type, but it is time consuming and
often discouraged. Beam head movements consist of pickup,
placement, and round-trip movements between the feeder base
and PCB. The number of PAP cycles affects the round-trip
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movements, and the slots where pickup operations take place
affects the pickup movements.

The nozzle types, component types, and pickup slots are
the three basic compositions of the head task assignment.
We call the consecutive PAP cycles with the same head task
assignment as the cycle group. The objective of the model
entails the primary sub-objectives, except for the movements
of the gantry, which is optimized by the route schedule
method. The PCBA process can be regarded as a capacitated
vehicle route schedule problem [12], with restriction of a head-
accessible point set, which proves it is nevertheless a NP-hard
problem, and the extra constraints rather increase the difficulty
of solving the problem.

The assumptions for the PCBA process are listed
blowbelow.

• The compatibility between the nozzle and component
types is predetermined.

• The assembly time of the different types of components
is the same, and the capacity of the feeder base is much
larger than the requirement.

• The interval between adjacent heads is an integer time
of the interval between adjacent slots for simultaneous
pickup.

• The time spent moving to the ANC for nozzle change is
included in the nozzle change time, and the number of
nozzle types is less than the number of heads.

B. Integer Linear Programming Model
An integer model for the head task assignment is derived

based on [6], where the components are partitioned into
different cycle groups. The notations of the integer model are
summarized in Table I. The objective (1) of the model is the
sum of the number of PAP cycles, nozzle changes, and pickup
operations with different weights.

minT1 ·
∑
l∈L

wl + T2 ·
∑
h∈H

∑
l∈L

nlh + T3 ·
∑
s∈Se

∑
l∈L

wl · psl

(1)
The nonlinear term wl·psl in the objective can be substituted

by an intermediate variable λsl, which represents the number
of pickups from slot s in cycle group l and can be linearized
with big M method as λsl ≤M · psl,

λsl ≤ wl, ∀s ∈ Se, l ∈ L.
λsl ≥ wl −M · (1− psl) ,

(2)

Constraint (3) ensures that the sum of placement points of
component type i on all cycle groups equals the number of
points on the PCB.∑

h∈H

∑
l∈L

wl · uihl = ϕi ∀i ∈ I (3)

The nonlinear term of constraint (3) can also be linearized,
similar asto the linearization of the nonlinear term in the
objective function.

Constraints (4)–(5) convert the pickup slot to the leftmost
head-aligned one, so that the number of pickup operations in
a cycle group can be computed directly.

psl ≥ v[s+(h−1)·r]hl ∀h ∈ H, s ∈ Se, l ∈ L (4)

TABLE I
NOTATIONS SUMMARY OF THE MATHEMATICAL MODEL

Indices & Sets
i ∈ I index of component type, I = {1, 2, · · · }
j ∈ J index of nozzle type, J = {1, 2, · · · }
h ∈ H index of head, H = {1, 2, · · · }
p ∈ P index of placement point, P = {1, 2, · · · }
l ∈ L index of cycle group, L = {1, 2, · · · }

s ∈ S, Se
1 index of feeder slot, S = {1, 2, · · · }, and Se =

{−r · (|H| − 1) + 1, . . . , 0, 1, 2, . . . , |S|}
Parameters

T1 the average moving time of round trip between PCB and
feeder base

T2 the average time of nozzle change operation
T3 the average time of pickup operation
ζip = 1 if component type i is compatible with placement point

p, otherwise, ζip = 0
ϕi the number of placement points of component type i
r the ratio between the interval of adjacent heads and slots
τ the interval distance between adjacent heads
M a sufficiently large positive number.

Decision Variables
uihl = 1 if and only if head h picks up the component type i

in cycle group l
zjhl = 1 if and only if head h is equipped with nozzle type j

in cycle group l
vshl = 1 if and only if head h picks up component from slot

s in cycle group l
fsi = 1 if and only if component type i is arranged on slot s
psl = 1 if and only there are at least one head h picking up

components from slot s+(h− 1) ·r whose equivalent slot
is s.

nlh = 1 if and only if head h changes its equipped nozzle
between cycle group l and l + 1

wl the number of PAP cycle in cycle group l
1 The subset Se refers to the equivalent slots set of aligned slots of the

leftmost head when one head pickups component.

∑
h∈H

v[s+(h−1)·r]hl ≥ psl ∀s ∈ Se, l ∈ L (5)

The number of nozzle changes between cycle group l and
l+1 is determined by constraint (6). Since the boards take over
during the assembly process, we can regard the (|L|+ 1)st
cycle as the first cycle of the next board.

nlh =
1

2
·
∑
j∈J

∣∣zjhl − zjh(l+1)

∣∣ ∀h ∈ H, l ∈ L (6)

The nonlinear term of absolute value can be further lin-
earized as present in [13], which is replaced by the sum of
two positive terms n+

jhl and n−
jhl as

nlh = 1
2

∑
j∈J

(
n+
jhl + n−

jhl

)
,

zjhl − zjh(l+1) = n+
jhl − n−

jhl, ∀j ∈ J, h ∈ H, l ∈ L.

n+
jhl ≥ 0, n−

jhl ≥ 0
(7)

There is a coupling between the two decision variables uihl

and vshl, and the product of the two γishl determines the feeder
assignment as

fsi ≥ γishl ∀i ∈ I, s ∈ S, h ∈ H, l ∈ L (8)∑
h∈H

∑
l∈L

γishl ≥ fsi ∀s ∈ S, i ∈ I (9)

with the nonlinear term γishl = uihl · vshl, which represents
whether the head h picks up components i from slot s in cycle
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group l, is rewritten as γishl ≤ uihl,
γishl ≤ vshl, ∀i ∈ I, s ∈ S, h ∈ H,
γishl ≥ uihl + vshl − 1, l ∈ L.

(10)

Component assignment determines the pickup slots, and
Constraint (11) specifies the relationship between the result
of the pickup operation and component assignment.∑

s∈S

vshl ≥
∑
i∈I

uihl ∀h ∈ H, l ∈ L (11)

In addition to the above improved constraints, the con-
straints on tool consistency and compatibility are given in [6].

C. Initial Solution with Heuristic Algorithm
The proposed model solving is a complex computing pro-

cess in the branch-and-cut framework, and a high-quality
initial solution could eliminate the blindness search and speed
up convergence to the optimal solution. In the modeling
process, the number of cycle groups |L| is still an uncertain
hyperparameter, which has a significant impact on the model
complexity and solution quality. An initialized heuristic is
proposed to determine both the hyperparameter and initial
solutions of the model.

Algorithm 1: Initialized Heuristic for the ILP Model
1 function model initialize solution(ϕ, ξ)
2 Initialize L← {1} and Hj ← 1 for j ∈ J ;
3 while

∑
j∈J Hj ̸= |H| do

4 j′ ← argmaxj∈J

{∑
i∈I ξij · ϕi/Hj

}
;

5 Hj′ ← Hj′ + 1;
6 end
7 while true do
8 Let C be a |L|×|H| matrix, W be a |L|×1 matrix;
9 res← recursive (maxi∈I ϕi, ϕ, 1, L,H, C,W);

10 if res = success then
11 break;
12 end
13 L← L ∪ {|L|+ 1};
14 end
15 return C,W, L
16 end

The pseudo-code of the initialized heuristic presented in
Algorithm 1 consists of two parts. The head nozzle assignment
result is determined in the first part (line 2∼6), i.e., the number
of available heads Hj of nozzle type j under the condition
that minimizing the number of cycles without nozzle change.
After that, the algorithm recursively searches for a feasible
solution by adding the placement points of the cycle group
set L (line 7∼14). The heuristic findings workload results Wl

and component assignment result Clh offer the initial solution
of the model, i.e., Equation (12).

wl =Wl, uClhhl = 1 l ∈ L, h ∈ H. (12)

The recursive function is implemented as shown in Algo-
rithm 2, which is to iteratively distribute components in a non-
decreasing order of points, following the cycle group index.
There are three possible cases for the return of the recursive

process. Except for success, which indicates an initial solution
has been found, fail indicates that the model is infeasible for
the given cycle group L, while backtrack indicates that the
current workload d for cycle group l is unsolvable and another
try is executed to distribute a new workload d− 1.

Algorithm 2: Implementation of Function recursive
1 function recursive(d, ϕ, l, L, H, C,W)
2 if l > |L| and

∑
i∈I ϕi = 0 then

3 return success;
4 else if d ≤ 0 and l = 1 then
5 return fail;
6 else if d ≤ 0 or l > |L| then
7 return backtrack;
8 end
9 ϕ′ ← ϕ, H′ ← H, Wl ← d, h← 0;

10 for j ∈ J do
11 while h← h+ 1;H′

j > 0 do
12 i′ ← argmini∈I

{
ϕi | ξij · ϕi ≥ d

}
;

13 Clh ← i′, ϕi′ ← ϕi′ − d, H′
j ← H

′
j − 1;

14 end
15 end
16 res ← recursive(maxi∈I ϕi, ϕ, l + 1, L,H, C,W);
17 if res = success then
18 return success;
19 else if res = backtrack then
20 return recursive(d− 1, ϕ′, l, L,H, C,W);
21 end
22 end

D. Complexity Reduction Strategies for the Model

When dealing with actual production data, the high com-
plexity of the model makes it difficult to obtain a high-quality
solution in a reasonable time. It’s necessary to appropriately
reduce the complexity of the model in accordance with the
features of PCBA, which focus on two aspects.

1) Limit the values of decision variables: As the feeders are
densely arranged in an area of the feeder base, slots farther
away from the PCB are always ignored. Only consecutive slots
with an equal number of feeders are valid, and we define the
leftmost valid slot as the reference slot, which is decided by
the component assignment and consists of the following steps.

Step I average a weighted sum of the assembly heads for
different types of components i with its workload.

hi ←
∑
l∈L

∑
h∈H

uihl · h · wl

wl
. (13)

Step II convert the x coordinate of all the placement points
to the position of the leftmost head and average the value.

x←
∑
p∈P

xp −
∑

i∈I ζip · hi · τ
|P |

. (14)

where xp and yp are the x coordinate and the y coordinate of
placement point p, respectively.

Step III calculate the average number of slots that the heads
crossed by for the pickup process in one cycle on the feeder
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base.

∆s←
∑
l∈L

R{vshl · (s− h · r + r) | vshl ̸= 0, s ∈ S, h ∈ H}
wl

(15)
where R{·} denotes the range of the set.

Step IV determine the reference slot sREF based on the head
pickup range (slots crossed by) and the average placement
position of the head.

sREF ← ⌊x− sF1

τ
· r + ∆s+ 1

2
⌋+ 1 (16)

where sF1 is the x coordinate of the leftmost slot on the feeder
base. The feeder slot for component type i is computed from
the solution of the model and the reference slot position, i.e.,
sREF + r ·

∑
s∈S s · fsi.

2) Reduce the range of feasible domains: The solution space
of the model is cut by adding constraints to further improve the
solving efficiency. Constraints (17)–(20) are not the necessary
condition for model solving and are utilized to reduce the
range of feasible domains further and round out inappropriate
solutions ahead of time.

Constraint (17) ensures the lower cycle group has no less
workload than the higher cycle group. Constraint (17) ensures
that the lower cycle group has a higher priority in picking up
components with more PAP cycles.

wl ≥ wl+1 ∀l ∈ L\ {|L|} (17)

Constraint (18) gives the lower bound and upper bound of
the number of PAP cycles, where the upper one is given based
on the heuristic initialize algorithm. The heuristic solution Wl

gives the worst case for the number of total PAP cycles without
nozzle change, and an optimal case is that all heads divide
components equally; two of these cases give the upper bound
and lower bound of cycle groups in Constraint (18).

⌈
∑
i∈I

ϕi/ |H|⌉ ≤
∑
l∈L

wl ≤
∑
l∈L

Wl (18)

Constraint (19) presumes that all placement heads have
nozzles, even if they do not pick up and position components,
which helps to eliminate the unsatisfactory result. A general
case in Constraint (19) is that all heads are not empty, even if
they do not pick up any components.∑

h∈H

∑
j∈J

zjhl = |H| ∀l ∈ L (19)

Constraint (20) limits workload with component assignment
results to improve the search speeds further.

((((((((((((((hhhhhhhhhhhhhh

M ·
∑
i∈I

∑
h∈H

uihl ≥ wl ∀l ∈ L (20)

E. Selection Criteria of Solution Pool

In general, the solution of the model is not unique, and
different solutions indirectly affect the movements of the

gantry. standard solvers can systematically search for a so-
lution pool- a collection of multiple optimal solutions. The
model determines both the component assignment and feeder

arrangement. However, its objective function does not incor-
porate the pickup movement, which leads to different pickup
paths that have the same objective values. It also does not
take into account the layout of the placement points, but its
solution limits the set of points that each head can access.

As there is insufficient information regarding the points and
sequence of heads placed, we propose a fast pre-evaluation
heuristic algorithm for selecting one result from the solution
pool. The assignment of the head task determines the path of
the pickup process as

E1 =
τ

r

∑
l∈L

wl · R {vshl · (s− h · r + r) | vshl ̸= 0,

s ∈ S, h ∈ H}
(21)

Regarding the placement movement, The placement points
set for each head is constrained by the component assignment
of the model. For the placement process, the first wl points of
the component type

∑
i∈I i · uihl are assigned to the head h,

followed by the subsequent wl points, and so forth. For each
head in the cycle group, we implement a route schedule for the
centroids of the assigned points, and the length of placement
route movement is denoted by E2. Out of all the solutions in
the pool, the one with the minimal E1+E2 is selected for the
next phase of optimization.

III. ROUTE SCHEDULE HEURISTIC

The placement route scheduling problem has a wide solution
space, and heuristic algorithms based on expertise or rules
are appropriate and generally yield satisfactory results. On
the basis of the mechanical structure of beam-heads, we
propose greedy-based and random route relink heuristics for
the placement route schedule.

A. Greedy-Based Route Schedule Heuristic

The greedy-based route schedule heuristic consists of the
following steps.

Step I compute the x coordinate of left boundary α and
right boundary β of the PCB and repeat through the Step II
to Step VII with the search step δ = (β − α) / (2 · |H|) and
three distinct search directions: from left to right (L→R), from
right to left (R→L), from center to edge (C→E).

Step II generate the starting point list Ŝ and head list Ĥ -
linear sequences based on the search direction.

L→R: Ŝ = {α+ (h− 1) · δ | h ∈ H}, Ĥ = H .
R→L: Ŝ = {β − (h− 1) · δ | h ∈ H}, Ĥ = {|H|+ 1− h
| h ∈ H}.

C→E: Ŝ = {(3 · α+ β) /4 + (h− 1) · 2/δ | h ∈ H}, Ĥ ={
⌈|H|+ 1/2⌉ − (−1)h · (⌈h/2⌉ − 1/2)− 7/2 | h ∈ H

}
.

The head list Ĥ represents the order in which the different
heads are assigned to the search direction.

Step III repeat through the cycle index k ∈ K, where K ={
1, 2, · · · ,

∑
l∈L wl

}
and initialize Pk as a 1×|H| array with

elements of -1, which represents the placement result.
Step IV repeat through search direction L→R, R→L, C→E

with starting point Θ ∈ Ŝ and head list Ĥ.
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Step V iterate through all the heads h ∈ Ĥ. If h is the first
one, find the point nearest to the starting point in the horizontal
direction,

p←argminp′∈{p′′|ι(p′′)=Ckh,p′′∈P} |xp′′−∆τh−Θ| (22)

otherwise, sort the assigned placement points and calculate
the moving distance, where ∆τh = (h− 1) · τ and ι (p) is the
component type of placement point p.

Xp ←
{
xPkh′ −∆τh | Pkh′ ̸= 1, h′ ∈ H

}
∪ {xp} (23)

Yp ←
{
yPkh′ | Pkh′ ̸= 1, h′ ∈ H

}
∪ {yp} (24)

Note q is the index of X with the qth smallest coordinate of
x axis, and

p← argminp′∈{p′′|ι(p′′)=Ckh,p′′∈P}

Xp′−1∑
q=1

max
(∣∣Xp′q −Xp′(q+1)

∣∣ , ∣∣Yp′q − Yp′(q+1)

∣∣) (25)

Step VI update the placement assignment result Pkh ← p,
P ← P\ {p}, go to Step V until Pkh ̸= −1,∀h ∈ H .

Step VII dynamic programming for route schedule in each
cycle and storing the Chebyshev moving distance. The x
coordinate of the center point Φ equals

∑
h∈H xPkh

/ |H| and
its y coordinate equals the pickup position of the feeder slot.
The transfer equation is written as

F (Φ, {Φ})← 0 (26)

F
(
h, Ĥ′ + {h}

)
← min

h′∈Ĥ′

{
F
(
h′, Ĥ′

)
+ g (h, h′)

}
,

Ĥ′ ⊆ Ĥ = H ∪ {Φ} , h ∈ H

(27)

if h ̸= Φ and h′ ̸= Φ,

g (h, h′)=max
(∣∣xPkh

−xPkh′−∆τh−h′
∣∣ , ∣∣yPkh

−yPkh′

∣∣)
(28)

otherwise,

g (h,Φ) = max (|xPkh
− Φx −∆τh| , |yPkh

− Φy|) (29)

with final result equals minh∈Ĥ

{
F
(
h, Ĥ

)
+ g (h,Φ)

}
.

Each head is associated with one placement position, and
the sequence in which the heads are placed is solved. The
placement sequence pair Q is formed by arranging the two
heads consecutively.

Step VIII compare the total moving distance and get the
placement assignment result with the minimal one.

B. Aggregated Route Relink Heuristic
An aggregated route relink heuristic (ARRH) is proposed

for the placement route improvement, and its flow is shown
in Algorithm 3. The primary principle of the algorithm is to
reallocate the off-center points in each cycle. The design of
the algorithm is based on the average position and moving
distance in each cycle (line 1). The cycle and its corresponding
off-center point are determined based on the moving distance
and offset, respectively (line 4). The swapping cycle, which
is nearest to the former off-center point, and the swapping
point are further determined (line 5∼11). After performing

Algorithm 3: The Flow of ARRH Algorithm
Input : component assignment C, placement assignment P ,

placement sequence Q
Output: reschedule placement assignment P̃ and placement

sequence Q̃
1 calculate average position xk, yk and moving distance Dk,

xk ←
∑

h∈H xPkh
/ |H|, yk ←

∑
h∈H yPkh

/ |H|, Dk ←∑
(q1,q2)∈Qk

max
(∣∣∣xPkq1

− xPkq2

∣∣∣ , ∣∣∣yPkq1
− yPkq2

∣∣∣)
in each cycle k, k ∈ K =

{
1, 2, · · · ,

∑
l∈L wl

}
;

2 P̃ ← P , Q̃ ← Q ;
3 while the terminated time has not been reached do
4 pr ← Pkrhr where kr ← randomk∈K (Dk), hr←

randomh∈H

(
max

(∣∣∣xPkrh
−xkr

∣∣∣ , ∣∣∣yPkrh
−ykr

∣∣∣)) ;
5 kc←argmink′∈K,k′ ̸=kr max (|xpr−xk′ | , |ypr−yk′ |) ;
6 for h ∈ H do

7 x←
xpr−xPkrh

|H| + xk, y ←
ypr−yPkrh

|H| + yk;
8 uh ← max (|xpr − x| , |ypr − y|) ;
9 foreach h′ ∈ H\ {h} do

uh ← uh +max
(∣∣∣xPkrh′

− x
∣∣∣ , ∣∣∣yPkrh′

− y
∣∣∣);

10 end
11 hc ← argmin

h∈
{
h′|ι(pr)=ι

(
Pkch′

)
,h′∈H

}uh,

pc ← Pkchc ;
12 Pkchc ← pr , Pkrhr ← pc ;
13 D′

kc
,Qkc ← cycle schedule

(
Pkc

)
, D′

kr
,Qkr ←

cycle schedule
(
Pkr

)
;

14 if Dkr +Dkc > D′
kr

+D′
kc

then
15 P̃ ← P , Q̃ ← Q, Dkr ← D′

kr
, Dkc ← D′

kc
;

16 xkc←
xpc−xPkchc

|H| +xkc , ykc←
ypc−yPkchc

|H| +ykc ,

17 xkr←
xpr−xPkrhr

|H| +xkr , ykr←
ypr−yPkrhr

|H| +ykr
18 else
19 P ← P̃ , Q ← Q̃ ;
20 end
21 end

the relink operation (line 12), the distribution of the cycle can
be more concentrated. The proposed cycle schedule relinks the
placement routes with a plain idea for search faster: sorting
the placement points non-decreasingly w.r.t. coordinate of x
axis and allocating them on the head from left to right.

IV. EXPERIMENT RESULT

A. Experiment Setup
This article solves the model using Gurobi 10.0 and Python

3.10 on the Intel(R) Core(TM) i5-11400 @2.60GHz with
16G RAM. Five times of runs are implemented with each
PCB, and the average values are recorded as the comparative
metrics. The proposed two-phase PCBA optimization (TPPO)
is compared with four representative decomposition-based
algorithms, including a component placer optimizer (CPO)
employed in anindustrial software, hybrid genetic algo-
rithm (HGA) [12], aggregated model (AGM) [13] and cell
division genetic algorithm (CDGA) [17]. The experimental
platform of a self-developed placement machine is shown in
Fig. 2.

In Table II, which lists the basic parameters of the PCB data,
we select ten different PCB data; among them, the first one is
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Fig. 2. The experimental platform of a placement machine.

TABLE II
BASIC PARAMETERS OF THE PCB DATA

PCB 1 2 3 4 5 6 7 8 9 10
|N | 1 1 1 2 2 3 2 3 3 4
|C| 1 2 3 4 5 5 6 7 8 10
|P | 400 216 288 352 432 384 336 198 170 196

an international standard speed test data IPC9850; the second
to the fifth data with relatively lessfewer component types and
randomly generated placement points are applied to test the
generalization of the algorithm; the last five are selected from
the actual industrial sites, to validate the application of the
algorithm in practice.

The parameter settings of the proposed algorithm are listed
in Table III. In the first phase, we set the pool parameters and
search mode, as well as the coefficients of the model based
on the metrics’ impact on assembly efficiency. We specify the
following as the termination condition of the model-solving
process because it takes a long time to solve the model
completely: the currently optimal solution has not changed
for more than 30 seconds. The big M value for linearization
equals the number of placement points. The search mode is
set to prioritize the 30 best solutions within the gap of 10−4.
In the second phase, the search step is dependent on the PCB
layout, and the route roulette wheel is chosen for the random
search of route relink with the upper 10 seconds.

B. Comparative Experiments
The sub-objectives of the PCBA process, which include the

number of cycles, nozzle changes, and pickup operations, with
the comparative histogram is illustratedshown in Fig. 3. It

TABLE III
THE PARAMETER SETTING OF THE TWO-PHASE ALGORITHM

Phase Parameter Setting

I

Coefficient T1 | T2 | T3 2 | 3 | 2
Big-M value |P |

Pool search mode Find multiple solutions
Pool solution 30

Pool gap 10−4

Terminated condition Unchanged in 30 seconds

II
Search step R ({xp|p ∈ P}) / |H|

Selection method Roulette wheel
Terminated time (sec) 10
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Fig. 3. The histogram of the sub-objectives comparison between the
proposed model and other mainstream algorithms.

can be seen the TPPO is more comprehensive than conven-
tional approaches. The cycle scheduling difficulties are better
handled by TPPO, AGM, and CPO, whereas evolutionary-
based CDGA and HGA typically have more PAP cycles.
AGM and HGA forbid changing the nozzle, which prevents
some of the simultaneous pickup operations from being carried
out and lowers the overall efficiency. Both TPPO and AGM
are model based algorithms; however, the former takes into
account the mechanical characteristics and has a greater pickup
efficiency. In most PCBs, the cycle counts of TPPO and
CPO are comparable, but TPPO performs better in terms of
nozzle changes and pickups.When comparing the Z-values
of weighted sub-objectives in Table IV, it becomes evident
that AGM is not as effective as the methods that consider
pickup efficiency. Table IV shows more general and compa-
rable results of Z-values for weighted sub-objectives that are
directly related to assembly efficiency. It can be seen that when
dealing with a single type of component data (PCB1), TPPO,
CPO, and AGM perform equally well. As the PCB becomes
more complicated with more component types, the TPPO
outperforms other mainstream algorithms, and there is also
a tendency to increase gaps between the proposed algorithm
and other research.

Three test cases (TCs) are constructed to compare the
solving efficiency for different model settings in Table V. We
call the model with component partition, complexity reduction
strategies as the improved model and the model without the
proposed techniques as the original model. We utilize the near
known optimal solution as a benchmark since it is hard to
find the optimal one to a NP hard problem for all PCBs.
The benchmark value Ob of PCB1∼PCB3 are the optimal
result for solving the original model. As the size of the data
increases, the original model cannot find an optimal solution
in an acceptable time. The solutions of PCB4∼PCB10 are
obtained after solving the proposed model with a sufficient
amount of time (at least 6 hours) and without the terminated
conditions, which are also the best results from the proposed
and comparative methods. The improved model’s solutions,
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TABLE IV
COMPARISON OF THE OBJECTIVES’ Z VALUE OF THE PROPOSED

MODEL WITH MAINSTREAM ALGORITHMS

PCB TPPO CPO HGA AGM CDGA
1 -0.448 -0.448 1.789 -0.448 -0.446
2 -0.845 -0.679 1.650 0.153 -0.279
3 -1.089 -1.089 0.677 0.603 0.898
4 -0.864 -0.318 -0.864 1.420 0.625
5 -0.942 0.211 -0.942 1.461 0.211
6 -0.996 1.208 -0.840 0.883 -0.254
7 -0.527 -0.370 -0.527 1.783 -0.360
8 -1.470 -0.104 0.238 1.331 0.005
9 -1.100 -0.936 0.763 1.147 0.127
10 -0.715 -0.431 -0.293 1.764 -0.325

AVG -0.900 -0.295 0.165 1.010 0.020

TABLE V
COMPARISON OF THE MODELSOLVING PROCESS OBJECTIVE VALUE

FOR WITH DIFFERENT TEST CASES

PCB 1 2 3 4 5 6 7 8 9 10

BASE Ob 934 312 336 396 432 390 288 158 164 196

TC-1
O1 934 312 336 396 432 390 288 158 168 218
G1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.44 11.22

TC-2
O2 934 312 336 396 432 390 288 162 - -
G2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.53 - -

TC-3
O3 934 312 336 396 432 390 288 172 192 220
G3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 8.86 17.07 12.24

which are also the best ones found compared with another
research, are selected as the benchmark for PCB4∼PCB7.
The solutions of PCB8∼PCB10 are obtained by solving the
improved model with sufficient search time (at least 6 hours).

The test cases following the settings: TC-1 represents the
solution of the improved model; TC-2 represents the solution
of the improved model without the initial solution; and TC-
3 represents the solution of the improved model without the
complexity reduction strategies. The formula for the test case
t’s gap is Gt = (Ot/Ob − 1) · 100%, t = 1, 2, 3. As can be
shown, the improved model’s highest gap from the benchmark
is 11.22%. The model-solving process can be quickly iterated
with the aid of the initial solution, and under the terminated
condition, the feasible solutions for PCB9 and PCB10 are not
even attainable. Even though, theoretically, TC-3 could achieve
better solutions, the model iterates more slowly in practice and
has a larger gap than the improved model under the terminated
condition.

The movement distance and assembly time are compared
next, as shown in Table VI. The notation D and T represent
the moving distance and assembly time, while the super-
scripts T , P , H , A, and C represent the TPPO, CPO, HGA,
AGM, and CDGA, respectively. ∆D and ∆T correspond to
the improvement rates of D and T , respectively, relative to
TPPO comparing with other research. DT

1 and DT
2 represent

the moving distance without and with route relink heuristic.
Since the route relink heuristic mainly adjusts the placement
movement that makes up a small portion of the whole, it does
not result in a high improvement in the overall movement.
For the TPPO method, the assembly process can be more
effective with fewer pickups and nozzle changes, even without

the shortest movement distance for PCB3, PCB4, and PCB7.
Compared to CPO, CDGA, AGM, and HGA, the proposed
method improves by 8.06%, 13.06%, 24.32%, and 24.31% in
assembly efficiency, respectively.

Lastly, we compare the solving time. CPO is not included
in the comparison since the specific algorithm has not been
disclosed. As shown in Table VII, compared with the TPPO,
we can conclude that the component partition is an effective
way to improve the search efficiency. The model without
component partition can only be applied in solving small-
scale data; for PCB1∼PCB3, the solving time is 21.41, 70.18,
and 193.23 seconds, respectively, which is much larger than
the proposed model. As a modeling method, TPPO is solved
longer because of the inclusion of pickup constraints compared
to AGM, but it is significantly faster than HGA excepted
PCB10. Even though it requires more time for TPPO, its
assembly efficiency is higher, and the time is within an
acceptable amount.

V. CONCLUSION

This article presented a two-phase optimization approach
for handling the head task assignment and placement route
schedule after breaking the PCBA process down into two parts.
By optimizing the primary sub-objectives at the modeling
phase and developing heuristic algorithms at the route schedule
phase, the two-phase framework combined the advantages
of both mathematical model and heuristic algorithms. We
compared the weighted sub-objective, which was related to
the overall assembly efficiency, with both heuristic-based and
model-based algorithms. The results showed that the proposed
algorithms are more thorough than previous research. A series
of specialized test cases validated the necessity of the pre-
processing technique, including the component partition ap-
proach, initial heuristic, and reduction strategies, to solve the
model. Furthermore, we compared the moving distance and
assembly time with other research. Although the placement
path of our proposed algorithms was not the shortest for some
PCB data, it improved the assembly efficiency because of the
optimization in the first phase. The solving time of the two-
phase algorithm was within acceptable bounds, even though
it was not faster than all the compared algorithms because we
took more factors into account and searched a greater domain.
Overall, the experimental results showed that the proposed
two-phase optimization effectively solves PCBA problems,
balancing the quality of the solution and computational cost.
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