
1

Response Letter CYB-E-2024-08-2321
Hyper-Heuristic Optimization Using Multi-Feature Fusion Estimator for PCB

Assembly Lines with Linear-Aligned-Heads Surface Mounters

Foreword

Dear Editor-in-Chief, Associate Editor, and Reviewers,
We sincerely thank you for your thorough reading and insightful advice that helped us significantly

improve the manuscript's quality. We have carefully considered all received comments for the
preparation of the revised version. The major changes to the document are summarized as follows:

1) Model reformulation. Due to the inadequate statement of the model in the original version, we
have revised the formulation of its decision variables, added the description of the types of
decision variables, and removed redundant constraints and variables, in particular adjusting the
constraints on assembly priority of components. The revised model is now easier to understand
with more complete constraints.

2) Algorithm description. To make the algorithmic formulation clearer, we further explained the
core parts of the proposed algorithms, such as the handling of component assembly priority by
low-level heuristic operators, the grouping strategy of components, and the bias assigned to
placement points. The key steps of the pseudo-code are annotated in the manuscript, so that
readers can better understand algorithm flow.

3) Experimental analysis. For full illustration of the effectiveness of the proposed algorithm, we
supplemented the validation conditions for the experiments, analyzed the sources of error in the
assembly time estimator, and provided an explanation of the reasons for the long running times
in solving efficiency experiments. The reported experiments fully illustrate the superiority of the
proposed solution, and at the same time provide directions for further research.

Besides, we have adjusted the relevant inadequacies in the presentation of the whole manuscript.
We believe that the revised version will be more conducive to throwing light on the problem and
providing reference for other practitioners.

In summary, we made detailed revisions based on all received comments. Point-by-point responses
to these comments can be found below. Reviewers' comments are in italicized red font, whereas our
responses are given in normal black font. Changes in the manuscript are given in blue underlined font,
and excerpts from the original manuscript in black underlined font. We sincerely hope this revised
version meets the requirements for publication in IEEE Transactions on Cybernetics. Thank you very
much for taking your valuable time to review our manuscript again.

Sincerely,
The Authors

2

Content
Responses to Reviewer #1 Comments ... 3
Responses to Reviewer #2 Comments ... 8
Responses to Reviewer #3 Comments ... 15
Responses to Reviewer #4 Comments ... 18

3

Responses to Reviewer #1 Comments

1. There are limited analyses of the coupling between the single machine optimization and entire line
optimization. The authors should give further explanation of the two problems, as they are also the
motivation for the suggested framework.

Response: Thank you for your comment. Our initial statement in the Introduction is as follows:
"However, they face difficulty in both the schedule of a single machine and the optimization of the

entire line. The efficiency of single-machine scheduling affects the search process for line optimization,
which in turn decides assembly tasks for single machines. Solving these two coupled optimization
problems poses a significant challenge."

For a clearer explanation of the relationship between the two optimizations and the motivation for
the algorithm design, the problem formulation has been further elaborated by adding the following to
the first paragraph of Section III.A:

"Component allocation determines the assembly task for surface mounters and inputs into a single-
machine optimization, which evaluates the quality of the solution … Improving search efficiency for
high-quality solutions is critical to line optimization. A large number of combinations for component
allocation makes it difficult to get high-quality solutions, and computing effort increases rapidly as the
problem scales up, needing massive resources even for small-scale data. … Considering that long time
for single-machine optimization can affect assembly efficiency, a fast assembly time estimator is
necessary."

2. The implementation of the population-generating code is confusing and the dealing on code length

also needs to be further explained.

Response: Thanks you for your comment. The generation of populations and the length of individual
patterns are randomized, with each gene corresponding to a pattern, i.e., an LLH operator. All
individuals are initialized with random lengths and genes combinations. The random length is just the
number of component group. The number of component groups is based on the average number of
placement points for each type of component. We divide the placement point of component type i

equally into 𝜃𝜃�𝑖𝑖 parts, where

𝜃𝜃�𝑖𝑖 = max �𝜖𝜖 ∙� 𝜃𝜃𝑖𝑖′
𝑖𝑖′

∙ 𝜙𝜙𝑖𝑖/� 𝜙𝜙𝑖𝑖′
𝑖𝑖′

, 𝜃𝜃𝑖𝑖� ∀𝑖𝑖 ∈ 𝐼𝐼

There are two aspects in dealing with combination patterns of different lengths. When converting
the genes to a component allocation result, if the length of individual genes is less than the number of
component groups, the genes are cyclically accessed from the beginning to complete the assignment
process. Crossover and mutation operations may make the length of individual genes greater than the
number of the component group, and then the excess is truncated. The following figure more visually
illustrates this process.

4

p n r r c u p

g r c p u

r u c p r u r p g u c p

g r p

p n r r c u c p u

truncate if out of boundary

 individual new individual

insert point

split
point

split point

crossover

mutation
new generated

pattern

Fig. R1. Crossover and mutation operations

The corresponding revision in Section IV.C is as follows:
"The length of genes is limited to the number of component division groups. Cyclic access to

individual patterns during component allocation is applied to handle the case when gene length is less
than the limit value. All individuals are initialized with random lengths and pattern combinations. If
the length of individual genes is less than the number of component groups, the genes are cyclically
accessed from the beginning to complete the assignment process. Each one of two genes selects a split
point and performs a crossover operation to exchange gene segments, and the mutation operator inserts
randomly generated patterns at a split point. Truncated procedures are applied to individuals whose
length exceeds the limit value. "

3. The mechanism for handing component duplication (also known as component division) is not

clearly presented. The authors should think about how to better present the algorithm.

Response: Thank you for your comment. We apologize for the lack of clarity in our statement. We
have reorganized the description of grouping strategies. Component grouping is the smallest unit for
making component assignments. Too much grouping leads to less efficient solving, whereas too little
grouping may lead to less efficient search. We set a benchmark value for component grouping based
on the number of available feeders, and the corresponding revision in Section IV.E is as follows:

"Available feeders are allocated to different machines for the same component type proportionally
to the number of points. The specific machine to which each point is assigned needs to be determined.
Before executing hyper-heuristic search, the average number of points for each type of component is
multiplied by a value that serves as a grouping threshold. Components with points that exceed the
threshold are divided into groups.

𝜃𝜃�𝑖𝑖 = max �𝜖𝜖 ∙� 𝜃𝜃𝑖𝑖′
𝑖𝑖′

∙
𝜙𝜙𝑖𝑖

∑ 𝜙𝜙𝑖𝑖′𝑖𝑖′
,𝜃𝜃𝑖𝑖� ∀𝑖𝑖 ∈ 𝐼𝐼 (16)

5

where parameter 𝜖𝜖 regulates the number of groups. This grouping strategy balances search effi-
ciency and diversity. The number of available feeders for a component restricts the maximum number
of allocated machines, but not as a basis for grouping"

4. A similar problem arises with the role of Rim in component grouping.

Response: Thank you for your comment. Bias ℛ𝑖𝑖𝑚𝑚 is applied in the process of placement points
assignment to surface mounters. For linear-aligned heads, the different placement heads that undertake
the pick-and-place task can lead to deviations between actual moving position and placement point
position. We introduce ℛ𝑖𝑖𝑚𝑚 to distinguish the additional deviation values introduced by pick-and-
place tasks of different placement heads, to shorten the path of the process, which improves the
optimization effect of clustering. For mainstream surface assembly process optimization methods, the
head task assignment of the surface assembly optimization does not depend on the specific position of
the placement point, which enabled us to design this algorithm.

For more clearly articulating the role of bias ℛ𝑖𝑖𝑚𝑚 in algorithm design, we have made the following
revision at the end of Section IV.E:

Component allocation determines the upper limit of the number of placement points of each type
assigned to surface mounters in the clustering process.

Based on this, the distribution of the duplicated points on heads affects their distance from the center
point of the machine. The distribution of points has an impact on assembly efficiency, especially for
surface mounters with linear-aligned heads, and the placement position of a point depends on the PAP
head. Current research divides surface mounter optimization into head task assignment and pick-and-
place sequence, where the former does not depend on the distribution. The head task determines
deviations from the center position due to the alignment of the heads. A bias ℛ𝑖𝑖𝑚𝑚 associated with the
head task assignment is applied in the clustering process, as follows:

ℛ𝑖𝑖𝑖𝑖 = ����𝑥𝑥𝑝𝑝 ∙ 𝜆𝜆𝑖𝑖𝑖𝑖 ∙ 𝑢𝑢𝑖𝑖𝑖𝑖ℎ𝑚𝑚 − ℎ ∙ 𝜌𝜌
𝑝𝑝∈𝑃𝑃

�
ℎ∈𝐻𝐻𝑘𝑘∈𝐾𝐾

 ∀𝑖𝑖 ∈ 𝐼𝐼,𝑚𝑚 ∈ 𝑀𝑀

5. The authors categorize their low-level heuristics as data- or target-driven. What is the distinction

between target-driven and estimated sub-objectives (which could be the same thing)?

Response: Thank you for your comment. Target-driven LLHs are designed based on estimated sub-
objectives, where the main difference is that LLHs in the allocating stage only compare relative values
of sub-objectives between different mounters without estimating specific values, with the aim of
speeding up the efficiency of the component allocation process. The estimation method we present in
the evaluation of the solution, aims to improve the accuracy of the assembly-time estimator with the
help of specific sub-objective values. The corresponding revision in Section IV.B is as follows:

6

"Target-driven LLHs are related to assembly efficiency, and key sub-objectives are extracted as a
basis for component allocation. Instead of specific values, they compare the relative values of the sub-
objective between surface mounters, which optimal value of the sub-objectives can be estimated
without a specialized optimization procedure."

6. In constraint (4), the sum of component index seems to be redundant.

Response: Thank you for your comment. We apologize for duplicating the component term in
Constraint (4), although this does not affect the solution of the model. The revised constraint is

𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠 ≤ � 𝑣𝑣[𝑠𝑠+(ℎ−1)∙𝜏𝜏]𝑘𝑘ℎ𝑚𝑚
ℎ∈𝐻𝐻

≤ 𝑁𝑁 ∙ 𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠 ∀𝑠𝑠 ∈ 𝑆𝑆,𝑘𝑘 ∈ 𝐾𝐾,𝑚𝑚 ∈ 𝑀𝑀 (4)

where 𝑣𝑣𝑠𝑠𝑠𝑠ℎ𝑚𝑚 indicates if head ℎ picks up components from slot 𝑠𝑠 in cycle 𝑘𝑘 of machine 𝑚𝑚, and
𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠 indicates if component is picked up when the left-most head aligns to slot 𝑠𝑠 of machine 𝑚𝑚 in
cycle 𝑘𝑘.

7. The meanings of the notation T1 to T5 require further explanation.

Response: Thank you for your comment. We apologize for neglecting to formulate this point. We
have added it to the explanation of the relevant notations in the modelling section as follows:

min max
𝑚𝑚∈𝑀𝑀

⎝

⎜
⎛
𝑇𝑇1 ∙ �𝑔𝑔𝑘𝑘𝑘𝑘

𝑘𝑘∈𝐾𝐾

+ 𝑇𝑇2 ∙ � �𝑛𝑛𝑘𝑘ℎ𝑚𝑚
ℎ∈𝐻𝐻𝑘𝑘∈𝐾𝐾\{|𝐾𝐾|}

+ 𝑇𝑇3 ∙ �𝑤𝑤𝑘𝑘𝑘𝑘
𝑘𝑘∈𝐾𝐾

+ 𝑇𝑇4 ∙��𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠
𝑘𝑘∈𝐾𝐾𝑠𝑠∈𝑆𝑆

+

𝑇𝑇5 ∙���𝑢𝑢𝑖𝑖𝑖𝑖ℎ𝑚𝑚
ℎ∈𝐻𝐻𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝐼𝐼 ⎠

⎟
⎞

(1)

The objective (1) of the model is to minimize the maximum assembly time weighted key assembly
metrics among all machines, using key metrics with different weights T1 for assembly cycle, T2 for
nozzle change, T3 for pick-up movement, T4 for pick-up operations, and T5 for placement operations.

8. In Table IV, ensure that the table's header (e.g., maximum and minimum) is correct.

Response: Thank you for your comment. We are sorry for this error and have fixed it in Table IV as
shown below:

TABLE IV

PARAMETERS OF TRAINING AND TESTING DATA

Training
Sets

of Samples Outlier % Mean Median
2000 11.25 128.67 130.13

Minimum Maximum Std. Dev
2.71 232.95 71.67

Testing
Sets

of Samples Outlier % Mean Median
400 10.75 126.76 127.11

7

Minimum Maximum Std. Dev
3.80 311.38 72.23

9. The references are cited in an incorrect order in Page 1.

Response: Thank you for your comment. We have adjusted the citation format and numbering of
references throughout the manuscript where similar problems were found.

8

Responses to Reviewer #2 Comments

1. While the authors claim that it is possible to estimate the optimal value of the sub-objective of the
assembly process, it remains unclear how to justify the optimality of the obtained value.

Response: Thanks for your comment. We apologize for this inaccurate statement. The proposed sub-
objectives estimation method is just used for comparison of the relative values of sub-objectives
between machines and cannot be solved as an optimum (and also please note that to get an optimum
is not necessary in this context). Furthermore, the values of the estimated sub-objectives are
intermediate in the allocation process and not the final result of the optimization algorithm. To clarify
all this, we have made changes in the manuscript as follows:

"Target-driven LLHs are related to assembly efficiency, and the key sub-objectives are extracted as
a basis for component allocation. Instead of specific values, they compare the relative values of the
sub-objective between surface mounters, which optimal value of the sub-objectives can be estimated
without a specialized optimization procedure."

2. The authors employ nozzle change indicator in both low-level heuristic design and estimator data

preparation. What is the difference between the two?

Response: Thank you for your comment. In the heuristic iterative search, the algorithm needs to
quickly assess the quality of the solution. For the low-level heuristic operator, the metric is the
likelihood of a nozzle change occurrence, whereas for the time estimator the metric is the number of
nozzle changes. The former is measured as the mean square deviation of the average number of points
assigned to the head by the nozzle, whereas the latter is determined using the heuristic algorithm. We
consider nozzle change metrics from different perspectives to improve the operational efficiency of
the algorithm.

3. The authors claim that the coding length is dictated by the number of component groups. How does

this relate to the data parameters?

Response: Thank you for your comment. The length of the code is a random value not exceeding the
number of component groups, which are related to the number of feeders available and placement
points. In the case of a component with multiple feeders, the simplest approach is to divide them
equally, which may result in an uneven distribution of points between machines. Increasing the number
of component groups while limiting the upper limit of the number of assignable machines can solve
the problem of uneven distribution, but it increases the solution space and reduces solving efficiency.
Therefore, an algorithm that determines the number of component groupings based on the average
number of placement points for each type of component is proposed, and parameter 𝜖𝜖 is used to
regulate the number of groups.

9

𝜃𝜃�𝑖𝑖 = max �𝜖𝜖 ∙� 𝜃𝜃𝑖𝑖′
𝑖𝑖′

∙ 𝜙𝜙𝑖𝑖/� 𝜙𝜙𝑖𝑖′
𝑖𝑖′

, 𝜃𝜃𝑖𝑖� ∀𝑖𝑖 ∈ 𝐼𝐼 (16)

4. How do low-level heuristics handle component priority and machine constraints

Response: Thank you for your comment. Low-level heuristics handle component priority and machine
constraints with feasible machine set. All LLHs are based on the set of assignable surface mounters,
and the relevant component allocation is also based on this. We have revised the statement in Section
IV.B to make the process easier to understand, as follows:

"The number of component feeders and surface mounter specifications restrict the component
allocating process. All LLHs are based on the set of assignable surface mounters. LLHs take into
account the limitations imposed by the allocation of components of the same type. Priority constraints
limit the machines that can be allocated, and the component is replaced with one assigned to fulfill the
requirement if no machine is allocatable. The feasible set is adjusted based on the component-
assigned mounters. When the number of assigned mounters equals that of available feeders, the indices
of assigned mounters are regarded as the new feasible set. Otherwise, the indices of all mounters are
regarded as the feasible set. Component prioritization needs to be checked first to see if the loop is
closed between constraint relationships and, if so, there is no solution. Otherwise, if during the
component allocation process a newly allocated component breaks the priority constraint, the assigned
components that do not satisfy the constraint relationship are replaced and re-allocated with the same
strategy."

5. In the flow of the algorithm, the authors should annotate the key steps so that the reader is clear

about what they mean.

Response: Thank you for your comment. Although we had some annotations in the algorithms, we
agree it was not clear for readers to completely understand their implementation. We apologize for
such an oversight. In the revised manuscript, annotations have been added to all the key steps of the
algorithms that, combined with the statements in the main text, we sincerely hope have increased
readability to an acceptable. The corresponding revisions are shown below:

10

11

12

6. page 1, in abstract, it states: "Printed circuit board assembly line scheduling (PCBALS) is critical

to production, which is a major difficulty". That phrase is inappropriate because scheduling is a
means, not a difficulty

Response: Thank you for your comment. We apologize for the misrepresentation due to the order of
the phrases and have adjusted this as:

"Printed circuit board assembly line scheduling (PCBALS) is critical to production efficiency,
which is a major difficulty difficult task in the electronic industry for assembly lines using surface
mounters, which is critical to production efficiency. "

7. page 2, second column, the phase "modeling is difficult to implement effectively ". The authors

need interpret the exact meaning of "implement effectively".

Response: Thank you for your comment. We are sorry that such a statement in the manuscript is
inaccurate. We wanted to discuss the practical limitations of mathematical programming, in spite of
its theoretical ability to achieve optimal solutions. First, because of the difficulty for modeling the

13

actual problem. For some problems, it is difficult to express optimization objectives and constraints in
mathematical form. Also, complex mathematical forms or non-linear term can make models
unsolvable. Second, solving some models requires a huge amount of computational resources, and the
time for model solving dramatically increases with the scale of the problem. The text in Section II has
been revised as follows:

"Although mathematical modeling can solve problems optimally, yet it is difficult to obtain
mathematical expressions for some real-world applications and, even when this is possible, their
implementation may require unacceptably high computational complexity. complex and difficult to
implement effectively. "

8. page 3, second column, the type (or range of values) of decision variables in the model needs to be

clearly stated.

Response: Thank you for your comment. We apologize for the error. The revised Table I is shown
below (please note that only changed parts are listed here).

TABLE I

NOTATIONS OF THE MATHEMATICAL MODEL

Notation Description

Indices & Sets

𝜉𝜉𝑖𝑖𝑖𝑖 = 1, iff. component type 𝑖𝑖 is compatible with nozzle type 𝑗𝑗 (= 0, otherwise)

𝜂𝜂𝑖𝑖𝑖𝑖 = 1, iff. component type 𝑖𝑖 is compatible with machine 𝑚𝑚 (= 0, otherwise)

Decision Variables

𝑔𝑔𝑘𝑘𝑘𝑘 Binary variable, = 1, iff. any point is assembled in cycle 𝑘𝑘 of machine 𝑚𝑚

𝑢𝑢𝑖𝑖𝑖𝑖ℎ𝑚𝑚 Binary variable, = 1, iff. component type 𝑖𝑖 is assigned to head ℎ in cycle 𝑘𝑘 of machine 𝑚𝑚

𝑣𝑣𝑠𝑠𝑠𝑠ℎ𝑚𝑚 Binary variable, = 1, iff. head ℎ picks up components from slot 𝑠𝑠 in cycle 𝑘𝑘 of machine 𝑚𝑚

𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖 Binary variable, = 1, iff. component 𝑖𝑖 is assigned to slot 𝑠𝑠 of machine 𝑚𝑚

𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠
Binary variable, = 1, iff. component is picked up when the left-most head align to slot 𝑠𝑠 of

machine 𝑚𝑚 in cycle 𝑘𝑘

𝑛𝑛𝑘𝑘ℎ𝑚𝑚 Binary variable, = 1, iff. head ℎ of machine 𝑚𝑚 changes nozzle between cycles 𝑘𝑘 and 𝑘𝑘 + 1

𝑟𝑟𝑖𝑖𝑖𝑖 Binary variable, = 1, iff. component type 𝑖𝑖 is assembled by machine 𝑚𝑚

𝑤𝑤𝑘𝑘𝑘𝑘 Integer variable, which indicates slots crossed by heads during pickup in cycle 𝑘𝑘 of machine 𝑚𝑚

9. page 6, second column, the input of the algorithm point position is unclear.

Response: Thank you for your comment. We follow the notation of the model in the description of
the algorithm to avoid confusions due to excessive use of notation, with the difference that we treat
them as known variables. The input of algorithm 3 is revised as "Available feeder 𝜃𝜃𝑖𝑖, placement points
set 𝑃𝑃, machine-assigned points 𝑈𝑈, points position �𝑥𝑥𝑝𝑝,𝑦𝑦𝑝𝑝�, machine-component assignment 𝑢𝑢𝑖𝑖𝑖𝑖ℎ𝑚𝑚

14

and 𝑟𝑟𝑖𝑖𝑖𝑖", where the notations 𝜃𝜃𝑖𝑖, 𝑃𝑃, 𝑢𝑢𝑖𝑖𝑖𝑖ℎ𝑚𝑚 and 𝑟𝑟𝑖𝑖𝑖𝑖 have been given in Table I, and �𝑥𝑥𝑝𝑝,𝑦𝑦𝑝𝑝� are
the coordinates of the placement point 𝑝𝑝 on the PCB.

15

Responses to Reviewer #3 Comments

1. The authors point out that the estimator's results may be affected by the point distribution, but how
might this issue be resolved?

Response: Thank you for your comment. Since the distributional characteristics of the placement
points cannot be directly encoded, they inevitably have an impact on the accuracy of the estimator. To
solve this issue, we generate data with random distribution characteristics right at the time of model
training, to reduce the effect of distribution characteristics on it. The distribution characteristics of the
placement points determine the assembly path of the gantry during the assembly process, which
accounts for a relatively small percentage of the whole assembly process. Experimental results show
that our proposed method has an average error of 3.43% and a maximum error of 16.57% on the testing
set, which are significantly better than the state of the art. For the component allocation process, we
also apply multi-population search strategies and determine the final solution by providing multiple
candidate solutions combined with specific results from time estimation and single-machine
optimization for more accurate results.

2. The motivation of bias for aggregated clustering algorithm should be given.

Response: Thank you for your comment. Bias ℛ𝑖𝑖𝑚𝑚 is applied in the process of placement points
assignment to surface mounters. For linear-aligned heads, the different placement heads that undertake
the pick-and-place task can lead to deviations between actual moving position and placement point
position. We introduce ℛ𝑖𝑖𝑚𝑚 to distinguish the additional deviation values introduced by pick-and-
place tasks of different placement heads, to shorten the path of the process, which improves the
optimization effect of clustering. For mainstream surface assembly process optimization methods, the
head task assignment of the surface assembly optimization does not depend on the specific position of
the placement point, which enabled us to design this algorithm.

For more clearly articulating the role of bias ℛ𝑖𝑖𝑚𝑚 in algorithm design, we have made the following
revision at the end of Section IV.E:

Component allocation determines the upper limit of the number of placement points of each type
assigned to surface mounters in the clustering process.

Based on this, the distribution of the duplicated points on heads affects their distance from the center
point of the machine. The distribution of points has an impact on assembly efficiency, especially for
surface mounters with linear-aligned heads, and the placement position of a point depends on the PAP
head. Current research divides surface mounter optimization into head task assignment and pick-and-
place sequence, where the former does not depend on the distribution. The head task determines
deviations from the center position due to the alignment of the heads. A bias ℛ𝑖𝑖𝑚𝑚 associated with the
head task assignment is applied in the clustering process, as follows:

16

ℛ𝑖𝑖𝑖𝑖 = ����𝑥𝑥𝑝𝑝 ∙ 𝜆𝜆𝑖𝑖𝑖𝑖 ∙ 𝑢𝑢𝑖𝑖𝑖𝑖ℎ𝑚𝑚 − ℎ ∙ 𝜌𝜌
𝑝𝑝∈𝑃𝑃

�
ℎ∈𝐻𝐻𝑘𝑘∈𝐾𝐾

 ∀𝑖𝑖 ∈ 𝐼𝐼,𝑚𝑚 ∈ 𝑀𝑀

3. In the model building, the authors introduced a symbol mq to indicate the machine index of the

first/last component to be mounted under the condition of priority constraints. However, in practice,
we typically only know the priority relationship (that is which components must be assembled
before/after another), how do the authors handle this condition?

Response: Thank you for your comment. 𝑚𝑚𝑞𝑞 is an integer variable, which indicates the last (first)

machine to assemble component type 𝑖𝑖 (𝑖𝑖′), 𝑞𝑞 = (𝑖𝑖, 𝑖𝑖′). However, we noticed that this variable is
redundant and removed it. Constraints (10), (12), and (13) associated with priority constraint are
rewritten as follows:

𝑟𝑟𝑖𝑖𝑖𝑖 ≤ ��𝑥𝑥𝑖𝑖𝑖𝑖ℎ𝑚𝑚
ℎ∈𝐻𝐻𝑘𝑘∈𝐾𝐾

≤ 𝑁𝑁 ∙ 𝑟𝑟𝑖𝑖𝑖𝑖 ∀𝑖𝑖 ∈ 𝐼𝐼,𝑚𝑚 ∈ 𝑀𝑀 (10)

𝑚𝑚 −𝑁𝑁 ∙ (1 − 𝑟𝑟𝑖𝑖𝑖𝑖) ≤ 𝑚𝑚′ + 𝑁𝑁 ∙ (1 − 𝑟𝑟𝑖𝑖′𝑚𝑚′) ∀𝑞𝑞 = (𝑖𝑖, 𝑖𝑖′) ∈ 𝑄𝑄,𝑚𝑚 ∈ 𝑀𝑀,𝑚𝑚′ ∈ 𝑀𝑀 (12)
max𝑘𝑘∈𝐾𝐾,ℎ∈𝐻𝐻{𝑘𝑘 ∙ 𝑥𝑥𝑖𝑖𝑖𝑖ℎ𝑚𝑚} + 𝑁𝑁 ∙ (𝑟𝑟𝑖𝑖𝑖𝑖 + 𝑟𝑟𝑖𝑖′𝑚𝑚 − 2) ≤

 min𝑘𝑘∈𝐾𝐾,ℎ∈𝐻𝐻{𝑘𝑘 ∙ 𝑥𝑥𝑖𝑖′𝑘𝑘ℎ𝑚𝑚 + 𝑁𝑁 ∙ (1 − 𝑥𝑥𝑖𝑖′𝑘𝑘ℎ𝑚𝑚)} ∀𝑞𝑞 = (𝑖𝑖, 𝑖𝑖′) ∈ 𝑄𝑄,𝑚𝑚 ∈ 𝑀𝑀 (13)

Constraint (10) indicates the relationship between single-machine surface optimization and
assembly line component allocation. Constraints (12) and (13) correspond to priority constraints on
different machine assignments and on the same machine, respectively.

4. In algorithm 1, line 4, the component type is incorrectly assigned to the component index.

Response: Thank you for your comment. We apologize for this clerical error. We have fixed the
problem and added notes on key aspects of the algorithm to ensure that the algorithm is accurately
described.

𝑗𝑗 ← � 𝜉𝜉𝑖𝑖𝑗𝑗′ ∙ 𝑗𝑗′
𝑗𝑗′∈𝐽𝐽

In addition, we have explained the key steps of the algorithm to ensure that it is easier for the reader
to understand it.

5. In algorithm 3, the authors explain how each cluster's starting positions are determined, but they

do not consider the scenario in which all components assigned to the machine have more than one
feeder.

Response: Thank you for your comment. We apologize for the unclear statement. For aggregated
placement points assignment methods, the choice of initial points does not have a significant impact

17

on the results. The center of all the placement points can be selected as its initial point to speed up the
computation process. The center point of each mounter will be automatically adjusted by the influence
of the assigned position of the placement point for each component type. The related description is
revised as follows:

"Algorithm 3 provides an aggregative clustering heuristic. The components with a single feeder
have all of their points allocated to one machine, resulting in the center points of each machine. For
machines without assigned components, we take the center of all points as their center point. "

6. The randomly generated data is chosen for the network training data, does this affect the accuracy

of the network and, consequently, the final outcome?

Response: Thank you for your comment. Randomly generated data actually improves the accuracy of
the estimator. As mentioned earlier, distributional characteristics have an effect on estimation accuracy,
and randomized data have a relatively uniform distribution that improves fitting accuracy. In practical
network training, it is difficult to obtain a large amount of data from the production line. Less data
makes the network not fully exploit its characteristics. Randomly generated data solves this problem.

7. When comparing the computational efficiency of the algorithms, the hyper-heuristic performs

worse than the genetic algorithm, with one PCB 2-5 taking the longest time to run, please provide
an explanation for this result.

Response: Thank you for your comment. We explain in the manuscript the reason why the hyper-
heuristic algorithm takes longer: "The genetic algorithm consists of relatively basic operators, which
allow it to search quickly at the cost of solution quality. The hyper-heuristic and hybrid algorithms use
a more complex time-fitting approach and account for component duplication, resulting in longer times
than that of the genetic algorithm … Evaluating the quality of the candidate solutions takes a large part
of the solving time of the hyper-heuristic. "

Although the hyper-heuristic algorithm is not the shortest in terms of time spent, the improvement
in assembly efficiency it brings is worthwhile. Both PCB2-5 and PCB2-10 have four types of nozzles,
and their longer optimization time in production line L1 (consisting of two surface mounters) is due to
the longer time spent by the single-machine optimization algorithm in dealing with a larger number of
nozzle types. We added the following explanation:

"PCB2-5 and PCB2-10 are more complex. Single-machine optimization takes longer for PCBs with
larger number of components and nozzle types, resulting in relatively poor solving efficiency. "

18

Responses to Reviewer #4 Comments

1. The primary distinction from previous research is that this paper focuses on optimizing the PCB
assembly line for surface mounters with linear-aligned-heads. However, there is less description of
the operating characteristics of this mounter (compared to other types of surface mounters). The
literature review focuses more on rotary-head type.

Response: Thank you for your comment. We have researched all the PCB assembly line studies and
found that the majority of them centered around rotary-head surface mounters, with little to no research
on inline models. Although the two types of surface mounters in the assembly process are basically
the same, the special structure of the linear-aligned heads have a great impact on assembly efficiency.
Please note that neither in component allocation nor in time estimation have the related studies made
special treatment for the simultaneous pickup process. Nonetheless, the research on rotary-heads
surface mounters production line is still inspiring for us. We added the following sentence at the end
of the literature review section:

"To summarize, the present research focuses more on rotary-heads surface mounter line
optimization, which inspires us to further optimize a line consisting of surface mounters with special
linear-aligned heads structure in terms of search capabilities and time estimation accuracy. "

2. The proposed mathematical model contains non-linear terms, like Constraint (9), which leads it

unsolvable, and the authors do not give a way to deal with it.

Response: Thank you for your comment. The proposed model is an integer program model where
constraints (9) and constraints (13) are nonlinear terms. Direct linearization of these constraints is
difficult and does not guarantee the solvability of the model. In the experimental section, to compare
the proposed method with the approximated optimal solution of the model, we assume that the
available nozzles are sufficient, which makes Constraint (9) hold constant, while disregarding priority
constraints (12) - (13). We added the following statement in the revised version:

"… which is built by extracting key metrics that affect assembly efficiency. To make the model
linear and solvable, we assume enough nozzles are available and, in addition, placement priority
constraints are ignored."

3. The reviewer is unable to comprehend the relationship between Constraints (12)-(13) and the

priority constraints.

Response: Thank you for your comment. First, we have removed redundant decision variable 𝑚𝑚�𝑞𝑞.

Constraints (12) and (13) correspond to priority constraints on different machine assignments and on
the same machine, respectively, where 𝑟𝑟𝑖𝑖𝑖𝑖 indicates if component type 𝑖𝑖 is assigned to machine 𝑚𝑚.

19

For example, given priority constraint 𝑞𝑞 = (𝑖𝑖, 𝑖𝑖′) ∈ 𝑄𝑄 (component type 𝑖𝑖 is assembled before
component type 𝑖𝑖′), if component 𝑖𝑖 is assigned to machine 𝑚𝑚 , then for constraint (12) to hold
𝑟𝑟𝑖𝑖′𝑚𝑚′ = 0 must be satisfied when 𝑚𝑚′ < 𝑚𝑚, whereas 𝑟𝑟𝑖𝑖′𝑚𝑚′ can take any value (0 or 1) when 𝑚𝑚′ ≥
𝑚𝑚. Similarly, if 𝑟𝑟𝑖𝑖′𝑚𝑚′ = 1, there must be 𝑟𝑟𝑖𝑖𝑖𝑖 = 0 when 𝑚𝑚 < 𝑚𝑚′, whereas 𝑟𝑟𝑖𝑖𝑖𝑖 can take any value
for 𝑚𝑚 > 𝑚𝑚′.

𝑚𝑚 −𝑁𝑁 ∙ (1 − 𝑟𝑟𝑖𝑖𝑖𝑖) ≤ 𝑚𝑚′ + 𝑁𝑁 ∙ (1 − 𝑟𝑟𝑖𝑖′𝑚𝑚′) ∀𝑞𝑞 = (𝑖𝑖, 𝑖𝑖′) ∈ 𝑄𝑄,𝑚𝑚 ∈ 𝑀𝑀,𝑚𝑚′ ∈ 𝑀𝑀 (12)
For the condition that components 𝑖𝑖 and 𝑖𝑖′ are assigned to the same machine 𝑚𝑚, Constraint (13)

limits the assembly cycle of component 𝑖𝑖 to be less than or equal to the assembly cycle of component
𝑖𝑖′. For the case where component 𝑖𝑖 and component 𝑖𝑖′ are assigned different machines, Constraint
(13) holds constant.

max𝑘𝑘∈𝐾𝐾,ℎ∈𝐻𝐻{𝑘𝑘 ∙ 𝑥𝑥𝑖𝑖𝑖𝑖ℎ𝑚𝑚} + 𝑁𝑁 ∙ (𝑟𝑟𝑖𝑖𝑖𝑖 + 𝑟𝑟𝑖𝑖′𝑚𝑚 − 2) ≤
 min𝑘𝑘∈𝐾𝐾,ℎ∈𝐻𝐻{𝑘𝑘 ∙ 𝑥𝑥𝑖𝑖′𝑘𝑘ℎ𝑚𝑚 + 𝑁𝑁 ∙ (1 − 𝑥𝑥𝑖𝑖′𝑘𝑘ℎ𝑚𝑚)} ∀𝑞𝑞 = (𝑖𝑖, 𝑖𝑖′) ∈ 𝑄𝑄,𝑚𝑚 ∈ 𝑀𝑀 (13)

4. Similar problems also exist in algorithm design, where the authors explain few and need to be
supplemented.

Response: Thank you for your comment. In the algorithm implementation, the handling of component
assignment priorities is mainly reflected in the design of the low-level operators. We have revised the
statement in Section IV.B as follows:

"The number of component feeders and surface mounter specifications restrict the component
allocating process. All LLHs are based on the set of assignable surface mounters. LLHs take into
account the limitations imposed by the allocation of components of the same type. Priority constraints
limit the machines that can be allocated, and the component is replaced with one assigned to fulfill the
requirement if no machine is allocatable. The feasible set is adjusted based on the component-
assigned mounters. When the number of assigned mounters equals that of available feeders, the indices
of assigned mounters are regarded as the new feasible set. Otherwise, the indices of all mounters are
regarded as the feasible set. Component prioritization needs to be checked first to see if the loop is
closed between constraint relationships and, if so, there is no solution. Otherwise, if during the
component allocation process a newly allocated component breaks the priority constraint, the assigned
components that do not satisfy the constraint relationship are replaced and re-allocated with the same
strategy."

5. In terms of the hyper-heuristic optimization algorithm, the authors use multiple populations to

perform the search simultaneously. What is the motivation for doing this (instead of using just one
population)?

20

Response: Thank you for your comment. The sequence in which components are assigned can have
an impact on the load balancing results. We choose multiple populations, with different populations
representing one component allocation sequence, to avoid a single sequence becoming a bottleneck
limiting the efficiency of the assembly line. Simultaneous searching of multiple populations increases
the diversity of results and improves the quality of the solution. In addition, multiple populations can
provide candidate solutions with similar estimated assembly times, and the estimation error can be
overcome by further executing specific optimization algorithms for the candidate solutions. We have
added the following clarification in the revised version:

"Multiple populations with varying component allocation sequences iterate separately to avoid
allocation order limiting efficiency gains while providing multiple high-quality solutions for further
evaluation."

6. And what are the main advantages of the time estimator over existing estimators?

Response: Thank you for your comment. Most of the existing studies focus on linear fitting, which
has relatively poor fitting accuracy. Neural networks have advantages in both fitting effectiveness and
efficiency. However, in related studies, even if there exist several non-linear fitting methods using
neural networks, they have problems such as insufficient feature selection. The effectiveness of the
time estimator has been fully evaluated in the experimental section. From the experimental results, the
fitting accuracy of the neural network is significantly better than the linear fitting methods. Even
though it is the same neural network, the proposed coding method has higher accuracy.

The manuscript discusses the advantages of the proposed time estimator as follows:
"The complexity of the PCB assembly process makes some properties difficult to uncover, therefore,

we propose a heuristic algorithm that estimates performance metrics to improve fitting accuracy. …
The mean absolute error and maximal absolute error of training and testing data are listed in Table VI.
The performance of the fitting method on the testing set is the basis for evaluating the accuracy of the
estimator. It can be seen that the neural network method is more advantageous in time estimation. The
proposed estimator encoding method reduces the average absolute error on the testing set from 5.09%
to 2.01%, in contrast to the encoding method that simply feeds basic parameters. "

7. How does component duplication relate to the number of available feeders?

Response: Thank you for your comment. The number of feeders available corresponds to the type of
component. Multiple feeders can be available for the same type of component to increase productivity
by assigning them to different machines, which is referred to as component duplication, as discussed
below:

"Available feeders are allocated to different machines for the same component type proportionally
to the number of points. The specific machine to which each point is assigned needs to be determined.

21

Before executing hyper-heuristic search, the average number of points for each type of component is
multiplied by a value that serves as a grouping threshold. Components with points that exceed the
threshold are divided into groups.

𝜃𝜃�𝑖𝑖 = max �𝜖𝜖 ∙� 𝜃𝜃𝑖𝑖′
𝑖𝑖′

∙
𝜙𝜙𝑖𝑖

∑ 𝜙𝜙𝑖𝑖′𝑖𝑖′
,𝜃𝜃𝑖𝑖� ∀𝑖𝑖 ∈ 𝐼𝐼 (16)

where parameter 𝜖𝜖 regulates the number of groups. This grouping strategy balances search efficiency
and diversity. The number of available feeders for a component restricts the maximum number of
allocated machines, but not as a basis for grouping"

8. In experimental design, are different single machine optimization methods compared to demon-

strating the algorithm's generalization?

Response: Thank you for your comment. The suggestion for the algorithm's generalization as a key
metric for algorithmic design is reasonable. We strongly agree with it and would like to make some
points. We think that the generalization of the entire-line optimization algorithm is demonstrated by
the fact that it shows better results for different data. Our proposed algorithm consists of two parts -
time estimator and component allocation. For the time estimator, the surface mount optimization
algorithm should guarantee Pareto or near-Pareto optimality for multiple sub-objectives to ensure the
accuracy of the time estimation. Inaccurate fitting can make it difficult for component allocation to
balance the workload of surface mounters. Productivity improvement of the surface mount
optimization can ensure the improvement of the production line efficiency. Therefore, we choose the
state-of-the-art single-machine optimization algorithm. Other methods perform poorly in both
assembly time fitting and single-machine optimization, and the low production efficiency of the whole
line is not meaningful for the actual production.

9. Add quantitative measure of the comparison of the algorithm and the model, as well as time

estimation accuracy in the abstract.

Response: Thank you for your comment. We have modified the last part of the abstract as follows:
"Experimental results show that (1) the gaps between the solution from HHO-MFFE and the optimal

solution of the model are 3.44%~7.28% for small-scale data; (2) the proposed time estimator has higher
accuracy than regression and heuristic-based ones, with mean absolute error of 2.01% ~3.43% for
training and testing data, respectively; and (3) HHO-MFFE is better than other state-of-the-art
algorithms, with average improvement of 4.53%~12.18%."

10. The title of Section IV is suggested to be consistent with the name of the algorithm described in the

flowchart.

22

Response: Thanks for your comment. The title of Section IV has been expanded to HYPER-
HEURISTIC OPTIMIZATION WITH AN NN-BASED MULTI-FEATURE FUSION ESTIMATOR.

11. The range of values of the constraint variables in the model needs to be pointed out.

Response: Thank you for your comment. We apologize for our incompleteness in the model
description. The type of all decision variables (integer or binary) is now described in Table I.

12. When citing, utilize hyphenation for consecutively numbered references and order the citation by

number.

Response: Thank you for your comment. We have carefully revised the way references are cited in
the text.

13. Notations should be checked at every place in the paper.

Response: Thank you for your comment. We have carefully checked all notations in the manuscript
and ensured all of them have suitable explanations.

	Responses to Reviewer #1 Comments
	Responses to Reviewer #2 Comments
	Responses to Reviewer #3 Comments
	Responses to Reviewer #4 Comments

