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Abstraci—Printed circuit board assembly line scheduling
(PCBALS) is critical to production efficiency, which is a major
difficulty in the electronic industry for assembly lines using
surface mounters. This is a special type of line optimization that
uses different allocation techniques, resulting in wide differences
in assembly times between machines. This article proposes a
hyper-heuristic optimizer embedded with a multi-feature fusion
estimator (HHO-MFFE) for PCBALS using linear-aligned-heads
surface mounters. The objective and constraints are discussed,
and a min-max mathematical model for small-scale problems is
built. At the hyper-heuristic low level, seven data- and targei-
driven heuristics are presented for allocating componen
different machines. Strategies for component duplication are
proposed to improve the applicability of the algorithm and
the quality of the solution. A neural network assembly time
estimator that incorporates the coding of multi-features including
estimated sub-ol tives is proposed for evaluating the quality
of the solution. Experimental results show that the proposed
time estimator has higher accuracy, wi mean absolute error
of 3.43%, compared to both regre and heuristic-based
estimators, and that the HHO-MFFE is better than other state-of-
the-art algorithms, with average improvement of 4.53% ~12.18%.

Index Terms—PCBA line optimization, hyper-heuristic, com-
ponent allocation balance, multi-feature fusion time estimator,
linear-aligned-heads surface mounter

I. INTRODUCTION

RINTED circuit board (PCB) assembly, the process of
automatically nting various electronic components
onto bare boards, is an important phase in the manufacturing of
electronic products, determining their overall quality. Surface
mo s with linear-aligned heads for improving efficiency
are_widely used in PCB assembly. Manufacturers tend to use
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multiple surface mounters in series to increase pctivit'\t
However, they face difficulty in both the schedule of a single
machine and the optimization of the entire line. The efficiency
of single-machine scheduling affects the search process for line
optimization, which in turn decides assembly tasks for single
machines. Solving these two coupled optimization problems
poses a significant challenge.

A PCB assembly line (Fig. 1) consists of automatic equip-
ment including loader, screen printer, surface mounters, reflow
furnace, automatic optical inspector (AOI), and unloader. The
screen printer applies solder paste to the surface of PCBs.
Surface mounters pick and place components on the PCB pads.
The reflow furnace melts solder paste already pre-positioned
on the PCB, before cooling it to create a permanent solder.
Finally, the AOI looks for defects on the PCB to ensure
assembly quality. Central to production control is the efficient
use of machines, with surface mounters been the bottleneck
for assembly efficiency.

PCB assembly line scheduling (PCBALS) focuses on al-
locating components to multiple surface mounters in a pro-
duction line to improve assembly efficiency. The search for
complex feasible domains, which is an extension of the NP-
hard general production line optimization problem, is time-
consuming and intricate. The huge solution space requires
high-efficiency iterative searching, whereas the long time
required for single-machine optimization is inadequate for
evaluating each solution. Component allocation for the line
and time estimation for a single surface mounter are the main
tasks in PCBALS.

Extensive research has been conducted on the PCBALS
problem [1], [2], [3], and the optimization for single machine
has been thoroughly studied [4], [5]. Component allocation has
been explored for both model-based [6], [7]. [1] and heuristic-
based [8]. [9]. [3]. [10] algorithms. Most time fefimators are
fitting-based, which progressively evolved from the number of
points to other factors solved by heuristics, such as the number
of assembly cycles [1], nozzle changes [7] and feeder utiliza-
tion [9]. However, most research to date has concentrated on
the optimization of lines with rotary surface mounters [2],
[3]. [1]. [9]. which differs from the structural design with
linearly aligned heads. These optimization methods do not
take sufficiently into account the feature of the problem,
limiting the productivity of the lines with linearly-aligned-
heads surface mounters.

Heuristic algorithms have been well studied in the field
of assembly lines [11], disassembly lines [12] and parallel
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Fig. 1. PCB Assembly Line.

machines optimization [13]. Hyper-heuristic algorithms are a
novel optimization framework that combines the advantages
of hi vel heuristics and low-level heuristics to adaptively
solve a wide range of complex optimization problems. They
have been widely applied for route scheduling [14], truck
dispatching [15], or flow shop scheduling [16], to cite just a
few examples. The estimation of assembly time has been stud-
ied with regression fitting approaches [17], [18], [19]. Neural
networks (NN) provide strong nonlinear fitting capability, and
they can have a high fitting accuracy by designing extracted
data features. However, related studies [20] target only rotary-
h surface mounters.

In this article, a hyper-heuristic optimization algorithm with
a multi-feature fusi me estimator for PCB assembly lines
is proposed, whose contributions are summarized as follows:

1) A hyper-heuristic optimization method is proposed for
linear-aligned-heads surface mounter lines, which can
be applied to different scenarios in terms of component-
machine constraints, component duplication conditions,
or other factors.

2) A set of data- and target-driven low-level heuristics are
presented to search the solution space with high-quality
results.

3) An extraction method for data features is proposed, and
the features are fused within a NN time estimator, which
makes the estimation more accurate.

4) An aggl‘egalivmslering algorithm for duplicated com-
ponent points 15 proposed to improve the efficiency of

assembly lines.

The rest of the article is organized as follows. Section II
reviews related work about line optimization. Section III
formulates the mathematical model. The hyper-heuristic op-
timization with a multi-feature fusion time estimator is pre-
sented in Section IV. Experimentallifesults compared with
other approaches are presented and discussed in Section V.
Section VI concludes the article.

II. LITERATURE REVIEW

Many studies have contributed to the optimization of PCB
assembly lines. In this article, the single-model case [21]
is considered, in which a single PCB type is manufactured
without line changeover. This topic has been studied from
modeling and heuristic perspectives, with the sub-problems
of (:omponeg allocation and placement sequence. In [22],
the former has been proven to be NP-complete, which is
the main focus of the research. The present work focuses on
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optimizing search capabilities and time estimation accuracy in
PCB assembly lines.

Mathematical modeling can solve problems optimally, yet
it is complex and difficult to implement effectively. The
integrated model for changeable head configuration and com-
ponent allocation presented in [1] is linearized and includes
a partial relaxation form to speed up the searching process.
A min-max approximation integer model with setup and as-
sembly times, as well as an efficient branch-and-bound-based
optimal algorithm are introduced in [6]. As an extension to it,
a mixed integer model with feeder module usage, precedence,
and component duplication constraints is proposed in [23].
In [24] and [25], an expected value model and a fuzzy goal
model are built to deal with environmental uncertainties, such
as demand and machine breakdown, as a tradeoff between
optimality and stochasticity.

Meta-heuristics are commonly applied in PCB assembly
line optimization, including genetic algorithms [3], [2] and
hybrid spider monkey optimization (HSMO) [26], [27], among
others. In [2], a genetic algorithm to identify potential so-
lutions for machine-specific component allocation and place-
ment sequence problems is presented. In [3], a hybrid genetic
algorithm is researched, which takes into account a more
general scenario of component duplication. The solution is
evaluated using a greedy heuristic for assigning nozzles and
headsets. An HSMO algorithm is developed in [26] to solve
component allocation and placement sequence problems si-
multaneously. It is refined in [27] by incorporating a few extra
features to optimize completion time, energy consumption,
and maintenance time. A combination of an evolutionary
algorithm and mathematical programming to determine the
optimal configuration of the type of surface mounters in lines
1s presented in [28].

In addition, constructive heuristics based on intuition and
experience are used for PCB line optimization. In [8] line
assignment of modular surface mounters is divided in three
phases: head to module, component to head, and nozzle to
head. Heuristics, including random search, brute force, ala
evolutionary algorithms, are applied in each phase. In [9], a
deterministic hierarchical heuristic is presented to solve the
problem at a lower level, allowing component duplication for
identical machines. In [29] assembly process decisions are
decomposed into four related sub-problems and list-processing
algorithms for lines with dual-head surface mounters are
proposed.

Research has also been conducted to optimize the line as
part of multi-level production planning, consisting of PCB
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ggnm&nt to the line, component all on to machines,
and surface mounter optimization. An HSMO algorithm to
simultaneously solve the multi-level problems is presented
in [30]. Hierarchical heuristics are applied in [31] to solve
the problem through job partition, selection, grouping, load
balancing, and scheduling. In [28], a graph-based divide-and-
combine heuristic method is proposed to divide multiple PCBs
within a single product, and then sub-problems are solved with
standard solvers and meta-heuristics.

Component allocation depends on the assembly time of
surface mounters, and state-of-the-art research 1s based on
estimators. Early linear regression research in [17] estimates
assembly time from the number of component types and
placement points. A regularized least-squares regression with
a novel feature that is solved using the nearest neighbor
heuristic is proposed in [18]. A supported regression method
combined with symbiotic organism search is proposed in [19]
to improve estimation accuracy. NNs have the ability to fit
arbitrary nonlinear functions. In [20], a multi-layer perceptron
network estimator is presented considering component shape
and the area of the smallest rectangle around the component.

III. PROBLEM FORMULATION AND MODEL
A. Problem Formulation

PCB assembly lines have both similarities and differences
with regard to general production lines. They both assign
components to different machines for processing, and mul-
tiple machines can assemble the same type of component to
improve efficiency, which is called a duplicated condition. In
addition, they are subject to assembly priority requirements
and may restrict the types of machines to which components
can be assigned. The primary difference is in the computation
of assembly time for scheduling, which in PCB manufacturing
lines is in general more complex and depends on the optimiza-
tion single machine, as well as machine type, available
tools, and the types and number of components to be allocated.

Among the many factors that influence the efficiency of
a PCB assemblmc. the surface mounter takes the longest
time to process in the production line, thus determining the
efficiency of the entire line. A variety of interdependent factors
influence the assembly efficiency of a single surface mount
machine, including number of cycles, pickups, nozzle changes,
and placement points [5]. Two primary types of constraints
affect assembly line scheduling, namely tool and machine
constraints. Tool constraints refer to the limited number of
feeders, nozzles, and other devices available, whereas machine
constraints refer to the types of parts that must be assembled by
a specific machine for high-speed and high-precision surface
mounters to operate synergistically in a production line.

Improving search efficiency for high-quality solutions is
critical to line optimization. A large number of combinations
for component allocation makes it difficult to get high-quality
solutions, and computing effort increases rapidly as the prob-
lem scales up, needing massive resources even for small-
scale data. The unique mechanics of linear-aligned-heads
surface mounters must be taken into account when determining
assembly time. Traditional point-based fitting procedures are

TABLE 1
NOTATIONS OF THE MATHEMATIC AL MODEL
Notation  Description
Indi Sets
i€ Index of component type, THS8{1, 2, - - }
jed Index of nozzle type, J = {1,2,--}
ke K Index of cycle, K = {1,2,---}
se 8 Index of slot, § = {1,2,---}
he H Index of head, H = {1,2,---}
m e M Index of surface mounter machine, {1,2,---}
ge@ Pair of assembly priority ., @ = {(¢,2'),--- h i e [.i' €
I. which means i needs to be assembled before &'
mg € M Index of surface mounter machine, which indicates either
the last machine to assemble component i or the first
chine to assemble component ¢, g = (1,4') €
Parameters
by umber of placement points of component type i
@; Number of availablg feeders of component type i
G Number vailabl@dozzles of type j
£ij = 1iff. onent type i is compatible with nozzle type j
Tim = 1 iff. component type i is compatible with machine m
ip = 1 iff. component type i 15 compatible with point p
T Interval ratio between adjacent heads to adjacent slots
Ty ~T;  Weights for assembly efficiency-related metrics
N A sufficiently large number

Decision Varia|
Glem = . any point is assembled in cycle k& of machine m

Uikhm = Liif. component type 1 18 assigned o head h in cycle k&
of machine m

Uk hrn = 1 iff. head h picks up components from slot s in cycle
ke of machine m

fism = 1 iff. component ¢ is assigned to slot s of machine m

Egkm = 1 iff. component is picked up when the left-most head
aligns to slot s of machine m in cycle k&

Mhhim = 1 iff. head h of machine m changes nozzles between
cycles kand k + 1

Tim = 1 iff. component 7 is assembled by machine m

Wihern Slots crossed by heads during pickup in cycle & of machine

T

not applicable, since the type of components assigned to
the machine, as well as the number of points of each type,
can have a large impact on pickup efficiency. Single-machine
optimization takes a long time to obtain the exact time and
is not appropriate for line optimization with large solution
spaces.

B. mvced Integer Model

The notations used in this article are listed on Table L

In [4], an integer model for head task assignment including
the major factors that influence assembly efficiency is pro-
posed. Based on this model, a new approximation model is
proposed that assesses assembly line efficiency in terms of
weighted metrics.

;

min mﬁ-\?‘f{ Tl : Z Z Z Usikhm = TQ : Z Gkm +— T‘}

mel
tel ke K he H kekK

E E Mjehom T Ijl ’ z E Eglm T I}J ’ z Wkm
ke K

ke K\ {| K|} heH sef ke K

(1

The objective (1) of the model is to minimize the maximum
assembly time among all machines, using key metrics for
assembly cycle, nozzle change, pick up, and placement op-
erations. As described below, Constraints (2)—(6) are related




to the configuration of a single surface mounter, whereas Con-
straints (7)—(13) incorporate the factors for line optimization.

D tikpg < gim Yk €K h€HmeM (2)
=i 22 |
Tkhm = Z z |fij S Wikhm — Sij - ”»:‘{k'+l)hm|
iel jed (3)
Yk e K\{|K|},he HmeM
€skm = Z z 1"f.s+{h—l]-rfﬂr.?i,m = N - Eskm
il heH (4)
Wse S ke Kk me M
Whm 2 8 Egkm — Sr cEgthm T N- (P-.s'.frm T Es'km — 2] (5)
Yhe KkmeM,s€8,s €S
fi.sm S Z Z Uikhim * Vekhm E N fi.sm
keK heH (6)
Wiel,seSmeM
DD D Tikwm =i Vi€l (7
ke K he H meM
SN fium<: Viel ®)
seSmeM
Somax > Y G <G Vi O
me M iel he H
Pim < 3 > Tiknm SN T Vi€ LmeM  (10)
keK heH
Tim = 1im Vi€l meM (11)
m—i\"-(l—?"im)sﬁlqSm—j\"-(l—?"iam) (12)
Vg=(i,i) e Q.mye M. me M
ax ':'?-"H_J”" im T Ti'm — =
&'E?ji\’:H} Likhm N (rt 1 Titm 2) < 13)
i kewg Yo = (i,i' . M
&'E?}}E’:H Tt khm q (?.? ) € Q m e

The cycle of each machine with component assignment
1s defined in Constraint (2). Constraint (3) calculates the
number of nozzle changes. Constraint (4) converts the pick-up
slots to the left-most head-aligned one to get the number of
simultaneous pick-ups. Constraint (5) indicates the number of
slots through the pick-up movement. Constraint (6) represents
the relationship between component and feeder assignment.
More details about the relationship between decision variables
and tool constraints of a single machine can be found in [4].

Constraint (7) denotes all placement points that are assigned
to machines. Constraints (8) and (9) define the maximum nuriis
ber of machines the component can be assigned to, which 1s
limited by the number of feeders and nozzles. Constraint (10)
indicates the relationship between machine-assigned compo-
nents and head-assigned components. Constraint (11) restricts
the components to be assigned to compatible machines. Con-
straints (12) and (13) are restrictions on the priority of the
assembly process. The former indicates that a component with
a high priority cannot be assigned to a machine later than
a component with a low priority, whereas the latter restricts
the order in which two components are assigned to the same
machine. The model is validated using the Gurobi solver [32].

IV. HYPER-HEURISTIC OPTIMIZATION WITH A NN
ESTIMATOR

A. Solution Framework for the HHO-MFFE algorithm

As shown in Fig. 2, the proposed evolutionary-based HHO-
MFFE is built from low-level heuristics and an estimator.
Component division and cluster-based grouping algorithms
are designed for component duplication at the beginning and
end of the optimization. Multiple populations with varying
component allocation sequences iterate separately. The combi-
nation and execution order of low-level heuristics are specified
in the population-generating code. A multi-feature fusion
time esti r based on fully connected NNs is proposed to
calculate the fitness value of each individual, which 1s fed with
the data emstimatcd sub-objectives. In the iterative process,
truncated crossover and mutation operations are conducted on
the individuals. After the evolutionary process is completed,
placement points with the same component type are segregated
using an aggregated cluster algorithm. The last phase of line
optimization, known as single machine optimization, uses the
advanced techniques proposed in [4]. The best solution for
each population acts as a candidate solution, which then ex-
ecutes a single machine optimization to evaluate their quality
and decrease the impact of estimation errors.

| Component Division |

i

[ Population Initialization |

| Estimator
1

Feature Extraction

NN-based MFFE

Crossover & Mutation

Low-Level |
Heuristic 1

i Population Update

Target-Driven

Heuristics Heuristics

Cluster Group

Single Machine
Optimization

1
i
I
i
]
1
1
1
]
I
I
: Data-Driven
1
1
1
1
I
|
i
]
1
1
1
1

End

Fig. 2. Flowchart of the proposed HHO-MFFE algorithm.
B. Low-Level Heuristics for Component Allocation

Low-Level Heuristics (LLHs) are basic compositions of
hyper-heuristics, which can be divided in two types: data-
and target-driven. The allocation sequence for components is
preset, and heuristics are selected depending on the allocated
components.

Data-driven LLHs are connected to the number of points,
component type, and nozzle type, as follows: Minimum Points,
Minimum Component Types, Minimum Nozzle Types, and
Minimum Ratio Heuristics allocate components to the machine




with the minimal assigned placement points, component types,
nozzle types, and minimal ratio of number of component types
to nozzle types, respectively.

Target-driven LLHs are related to assembly efficiency, and
the key sub-objectives are extracted as a basis for component
allocation. The optimal value of the sub-objective can be
estimated without a specialized optimization procedure. The
sub-objective estimation based on a cascade rounding method
proposed in [33] is used here, and the number of heads
assigned to nozzle type j of machine m is denoted as ;.
The target-driven LLHs are:

1) Minimum Cycle Heuristic, which allocates components

to the machine with the minimal cycle without nozzle
change, i.e.,

arg min,, ¢ \s ma?\ 5 5 5 (&ij - Wikhm ) /Vim
=g

iel ke K heH
(14)

2) Minimum Nozzle Change Heuristic, which allocates
components to the machine with the minimal probability
of nozzle change, reflected in the mean squared error of
the points for each head, i.e.

Z Z Z (*-fi_',i : ui&'hm])'(‘fjm | J €.J
iel ke K heH (15)

where o () denotes the mean square deviation of a set.
3) Minimum Pickup Heuristic, which allocates components
to the machine with minimal pickup operations.

arg min o

meM

Algorithm 1 presents a method to estimate the number of
pick-ups. A hierarchical greedy head heuristic assigns com-
ponents to heads in decreasing order, subject to the number
of heads that are accessible to the nozzle. Each component
that is allocated tcm head implies a new cycle, and the
number of pick-ups is equal to the maximum number of points
that are assigned to the heads in each cycle. The number
of component feeders and machine specification restricts the
allocatable machines. LLHs take into account the limitations
imposed by the allocation of components of the same type.
Priority constraints limit the machines that can be allocated,
and the component is replaced with one assigned to fulfill the
requirement if no machine is allocatable. The machine with
fewest points among LLHs with the same evaluation value has
the highest priority to assemble components.

C. Hyper Heuristic for Line Optimization

In the evolutionary-based hyper-heuristic, each individual
gene correlates to an LLH denoted as a pattern. It operates
in a range of populations with various component allocation
sequences, as well as individual genes of varying lengths,
increasing search diversity. The length of genes is limited
to the number of component division groups. Cyclic access
to individual patterns during component allocation is applied
to handle the case when gene length is less than the limit
value. All individuals are initialized with random lengths and
pattern combinations. Each one of two genes selects a split
point and performs a crossover operation to exchange gene

Algorithm 1: Hierarchical Greedy Head Assignment

Input : Nozzle heads ~, component points ¢
Output: Number of pick-up operations ©
1 Setalx|J|vector £, alx |J| vector N, and a
1 % Ef::.i ¢; vector K of all zeros;
Sort i € I decreasingly with o;:
fori < I do
Je eyt
if N; Mod ~; =0 then
| L« L;+1;
end
Set cycle index ¢ + L;, K, + max (K., ¢;).
Nj<Nj+1
9 end
00 NThE e,

® ;o e Wb

segments. The crossover operator inserts randomly generated
patterns at a split point. Truncated procedures are applied to
individuals whose length exceeds the limit value. For each so-
lution, the specific algorithm is executed on the machine with
the longest estimated time, effectively reducing the number
of executions of single-machine optimization and increasing
solving efficiency.

D. Multi-Feature Fusion Time Estimator

NNs perform well at fitting complex and nonlinear data.
Multi-feature of fitting data is related to single-machine opti-
mization. Simulated data are fed to the network to ensure that
it is sufficiently trained. The complexity of the PCB assembly
process makes some properties difficult to uncover. Therefore,
a heuristic algorithm is proposed to estimate performance
metrics to improve fitting accuracy.

The fundamental data consists of the total number of place-
ment points, component types, nozzle types, and board size.
The estimated number of cycles and pick-ups of the preceding
section, as well as nozzle change, comprise the sub-objective
coding. Nozzle and component codes are presented in de-
scending order of the total number of points. A sufficiently
long encoding is used to ensure consistency across diverse
data inputs to networks, with redundant bits supplemented by
ZETOS.

Estimation of nozzle change probability cannot be directly
coded, and Algorithm 2 proposes a computation heuristic for
that. Components with the same nozzle type are grouped
according to their respective nozzle heads. The group of nozzle
J is denoted as G ;. Nozzle groups are progressively assigned to
heads, starting with empty heads and proceeding sequentially
to the heads with fewest points. When the allocation process
is complete, the heads with the most and least points are
divided equally, which is effective if the efficiency gain from
reducing the number of cycles after equalization outweighs the
efficiency loss from increasing nozzle change. This process
is repeated to increase the number of heads of the nozzle
with the most head-averaged points, and the total number of
nozzle changes is recorded until there is no overall increase
in efficiency.




Algorithm 2: Nozzle Change Computation Heuristic

Input : Nozzle heads ~, component points ¢
Output: Number of nozzle changes N*
1t Set 1 x |H| vector T of all zeros, 1 x |H| vector N,
V0, V¥ « oo and N* « (0
2 while V" < V* do

3 Set 1 x ; nozzle group G; with >, ¢ - &ij/7;
points for j € .J i
4 forn€gG;,je.J do
Assign nozzle groups to heads
h < argming ey {Tn} Nn < J,
T+~ Tp+n
6 end
7 Set number of cycles V' «— maxyg Ty, ;
8 while true do
9 Balance the heads with max and min points
W —argmaxpey T , B —arg minpe g Th, 3
10 it Ny = N, then
1 | break;
12 end
13 j’-(—;‘\"}g,?{l-(—{hh;ij’_.h.E H}.
J" e Ny, Ho e {h | N = 3", h € H};
14 i Ty (The — Tirr) > T - [[Ha| — [Ha]| then
15 | break;
16 end
17 N« ||Ha| — |H4]l,
Ve VT3 (T —The) + T N, T < T}
18 for h € Hy UH, do
19 T Xnrenyum, Tl (1Ha] + [Hel),
Np 4
20 end
21 end
2 if V < V* then
23 | V¥« V.N" N,y 5 + 1
24 end
25 end

E. Heuristic for Component Duplication

Components may have multiple available feeders and can
be assigned to more than one surface mounter to improve pro-
tion efficiency. Available feeders are allocated to different
machines for the same component type proportionally to the
number of points. The specific machine to which each point
1s assigned needs to be determined. Before executing hyper-
heuristic search, the average number of points for each type of
component is multiplied by a value that serves as a grouping
threshold. Components with points that exceed this threshold
are grouped. This grouping strategy balances search efficiency
and diversity. The number of available feeders for a component
restricts the maximum number of allocated machines, but not
as a basis for grouping. The number of machine-allocated
points is denoted as

Uim=Y_ Y tigpm Vi€ ImeM,

keK heH

(16)

Algorithm 3 provides an aggregative clustering heuristic.
The components with a single feeder have all of their points

allocated to one machine, resulting in the center points of
each machine. Based on this, the distribution of the duplicated
points on heads affects their distance from the center point of
the machine. A bias R;,, related to the head task assignment
1s applied in the clustering process, as follows:

3
Rim = Z Z Z Ty Nip Wiphm —hep | Vi€ l,me M
keK heH \peP

amn

where p is the interval distance between adjacent heads.

Algorithm 3: Aggregated Clustering Algorithm for
Duplicated Component Points

Input : Available feeder #/, component points set P,
machine-assigned points U/, points position
(z,y) -
Output: Machine-allocated points P
1 Set machine-assigned sets P, < & and number of
machine-assigned points U, + 0,i € [.m e M ;
2 for m € M do

3 for i e {¢' | Uinn = 0,8, =1,i" € I'} do

4 | Ui < |P]. P = P UP;

5 end

6 Set center points X, + Zpr:?‘«'... zp/ [Pl
Vi — Zpe?",.. Yp/ [Pm| of each machine ;

7 end

8 while frue do
XX VeV UUPP
10 forpe{p' |p' € Pt >1,icl} do

. 2
n M 4 arg My, e\ (Xm" — Ly T Rim: )™+

=

(Vimr — ?}‘p]2 | Uime < f.:’imr} as the allocated
machine, P, + P, U{p}, Uiy « Ui +1;

12 Xon 4= X + (2p — X — Rim) [ [Pl
Vo = Voo + (4 — Vi) [ [ Pa:

13 end

14 | ifX=Xand Y =) then

15 | break;

16 end

17 end

V. COMPARATIVE EXPERIMENTS
A. nerimental Setup

Experiments are run using a PC with an Intel(R) Core(TM)
i5-14600KF with Gurobi 11.0. Table II shows the experi-
mental parameters of hyper-heuristic and NNs. Iterations are
carried out across the populations with ten randomly generated
component allocation sequences. The multiplier of component
grouping is set to 1.5. The time estimator is a two middle-
layer fully connected NN with 1,000 neurons per layer and
relu is used as activation function. Results are compared for
PCB assembly lines L1, L2, and L3, equipped with 2, 3,
and 4 surface mounters, respectivelysiFifteen PCB data from
actual manufacturing lines are used to evaluate the assembly
efficiency of the algorithm, with the first five being on a




TABLE II
NN AND HYPER-HEURISTIC PARAMETERS

Method Parameters Value

Size of Population Group 10

. Number of Individual 20

Hyper Heuristic .
Crossover & Mutation Rate 0.6 & 0.1

Number of lterations 50

- 5
NN Leaming Rate 10

Number of Epochs 8000

smaller scale, as shown in Table III. As meta-heuristic results
are random, the average of the ten runs is taken as the result.

Training and testing data for time estimation fitting are
randomly generated, and assembly times are obtained from the
built-in simulator of the surface mounter, which is accurate for
performing optimization and full assembly process simulation.
A point distribution that is either sparse or concentrated can
affect assembly time, reducing the generalization performance
of the fitting method. Table IV shows statistical information
for PCB data. Data outliers are detected and removed using the
inter-quartile range rule [19] with a multiplier of 0.6. Training
and testing data have similar distribution characteristics.

B. Comparison of Proposed Algorithm and Mathematical

Model

Mathematical programming can be used to find optimal
solutions, but (.B for small-scale data. In this section, the
solution using the proposed method is compared with the
optimal solution of the model, which is built by extracting
key metrics that affect assembly efficiency. The weights of
the model are set using a linear fit to the training data, with
Ty = 0041, T> = 0.326, T3 = 0.870, Ty = 0.159 and
T5 = 0.015. The effect of the layout of points on assembly
efficiency is ignored. Table V presents a comparison of the
first fiwv a. Ty and Ty represent the weighted performance
metrics of the model and the proposed al m, respectively.
The gap &1 = (T /Tar —1) - 100% with respect to the
optimal solution of the model is 7.28%, 6.58%, and 3.44%
on aver@el|in 3 assembly lines. Comparison with the model
reveals that the proposed algorithm i1s clos the optimal
solution, with a maximum gap of 12.10%. The performance
of the hyper-heuristic algorithm is comparable to that of the
model solution, and the higher efficiency of the solution makes
it possible to apply it to larger-scale data.

C. Evaluation of Proposed Time Estimator

The accuracy of the time estimator impacts the search
direction for component allocation, as well as the quality of
solutions. Four different time estimators are used for compari-
son with the proposed one. The proposed eslimalmlds E.
Es refers to the NN fitting method using basic parameters
such as the number of points, number of components, number
of nozzles, board size, and so on, which is another way of
encoding. The heuristic estimators proposed in [3] and [8] are
denoted as F5 and E, respectively, with coefficients computed
using the least squares method. E'5 is an ensemble algorithm

with symbiotic organism search-based support vector regres-
sion [19].

The mean and maximum absolurror of training and
testing data are listed in Table VI. The performance of the
fitting method on the testing s the basis for evaluating
the accuracy of the estimator. It can be seen that the NN
method provides better time estimation. The proposed estima-
tor encoding method reduces the average absolute error on the
testing set from 5.09% to 2.01%, in contrast to the encoding
method that simply feeds basic parameters. Simultaneous pick-
up is not incorporated in two heuristic-based linear regression
fittings, resulting in poorly fitted results with mean absolute
errors of 28.82% and 27.65%, respectivela?spite being more
effective in the workshop production line of the PCB assembly
process, the SOS-based SVR has the lowest fitting accuracy,
because it ignores the distinctive properties of each single
PCB.

D. Comparison of the Component Allocation Algorithm with
Other Methods

The main task o line optimizer is to allocate compo-
nents to machines. In this section, the proposed algorithm is
compared with an industrial solver from an advanced manufac-
turer released in 2022, the hybrid algorithm [3], and the genetic
algorithm [8]. The industrial solver is an optimizer embedded
in an integrated production line management tool for surface
mount assembly lines. The hybrid and genetic algorithms are
both evolutionary-based methods that provide practical and
effective solutions for PCB assembly line optimization by
designing heuristic operators to search the solution domain.
The industrial solver has a built-in surface mount optimization
program, and the rest of the single-machine optimizations are
based on the methods proposed in [4].

Table VII shows the results of optimization using the four
algorithms mentioned above for the remaining 10 data. The
proposed hyper-heuristic algorithm outperforms the industrial
solver and the hybrid and genetic algorithms by 4.53%, 8.47%,

12.18%. respectively. In addition, data distribution of

the optimization results in three PCB assembly lines are
shown in Fig. 3. In algorithms with randomized results, the
hyper-heuristic produces a more consistent result. In most
cases, results of a single run of the hyper-heuristic outperform
those of the other methods. Even if it produces some weaker
solutions, the vast majority them outperform the best solutions
from the other methods.

E. Analysis of Solving Efficiency

Solving efficiency is one of the most important indicators
of algorithmic performance. Solving times are shown in Ta-
ble VIII. The industrial solver is not included in the compari-
son, because it is built into a runtime software package, which
includes importing data, optimizing, and outputting results.
As a consequence, in the industrial solver optimization time
cannot be separated from the rest and the comparison would
not be fair for it. The genetic algorithm consists of relatively
basic operators, which allow it to search quickly at the cost
of solution quality. The hyper-heuristic and hybrid algorithms




TABLE III
PARAMETERS OF PCB DATA
PCB 1-1 1-2 1-3 1-4 1-5 2-1 2-2 2-3 2-4 2-5 2-6 2-7 2-8 2-9 2-10
Num. of Comp. Type 4 4 5 5 5 16 29 7 2 45 7 47 40 10 40
Num. of Nozzle Type 3 3 3 2 2 3 3 3 3 4 4 4 2 3 4
Num. of Points 28 34 34 30 30 78 165 192 236 209 320 390 546 720 1510
Num. of Feeders 10 [ 8 7 5 16 30 12 24 46 12 53 48 18 40
#1007 107 107
16l wristic [ | Industrial Solver [ |Hiper Heunstic - [ industrial Salver 6 L [ IHyper Heuristc || industnal Salver
Fybnd Algarithm || Genetic Alganthm 48 Hybrid Algarithm || Genetic Algarithm Hybrid Algarithm || Genetic Alganthm
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Fig. 3. Comparison of the distribution of assembly efficiency optimization results of different methods on three PCB assembly lines.

TABLE IV
PARAMETERS OF TRAINING AND TESTING DATA

# of Samples Outlier % Mean Median
Training 2000 1125 128.67 130.13
Sets Minimum Maximum Std. Dev
271 302.94 71.67
# of Samples Outlier (%) Mean Median
Testing 400 10.75 126.76 127.11
Sets Maximum Minimum Std. Dev
3.80 311.38 7223
TABLE V

COMPARISON OF THE WEIGHTED KEY METRICS INDIC ATORS
MATHEMATICAL MODEL AND PROPOSED ALGORITHM

Line Ll L2 L3
Ty Tu aT Ty Tu aT Ty Ty 6T
1-1 2585 2626 159% 1758 1.837 4.49% 1676 1.813 8.17%
1-2 3286 3672 11.75% 2785 3122 12.10% 2473 2514 166%
1-3 2719 2998 10.26% 2.218 2.445 10.23% 1947 2054 550%
1-4 2744 3017 995% 2202 2314 5.00% 2202 2243 186%
1-5 2933 3017 2.86% 2432 2456 0.99% 2432 2432 000%
Avg 728% 6.58% 344%
TABLE V1
COMPARIS ON OF ESTIMATED ACCURACY BETWEEN THE NN AND OTHER
ALGORITHMS
Set m Parameters E, E» Es E E5
Training ean Absolute Error (%) 201 509 875 875 4530
Max. Absolute Error (%) 18.80 21.28 37.61 37.68 21494
Test Mean Absolute Error (%) 343 516 941 944 4599
Max. Absolute Error (%) 16.57 18.65 27.65 28.82 18398

use a more complex time-fitting approach and account for
component ication, resulting in longer times than that of
the genetic algorithm. The proposed hyper-heuristic is more
efficient than the hybrid algorithm, and the quality of the
solution it provides is higher. Evaluating the quality of the
candidate solutions takes a large part of the solving time of the
hyper-heuristic. By shortening the execution time of surface
mounter optimization, efficiency may be further increased.

VI. CONCLUSION

This article presents a hyper-heuristic optimization method
for PCBALS with an NN-based time estimator. The hyper-
heuristic algorithm is implemented using data- and target-
driven LLHs. A min-max mathematical model hafgbeen built
covering the major assembly efficiency metrics. In terms of
solution quality, the proposed method has comparable perfor-
mance to the optimal one obtained by the model when dealing
with small-scale data. The strategy for component duplication
divides components of the same type, balancing assembly
time between machines and improving assembly efficiency.
An aggregated clustering algorithm assigns placement points
to the specific surface mounters. NN-based time estimators
have high fitting accuracy, and the proposed coding with
approximated sub-objectives further enhances fitting accuracy.
The combination of the high accuracy of the estimator, along
with the search capability of the hyper-heuristic for large
domains, results in high-quality solutions for PCBAIm:rob-
lems. Compared with industrial solutions and other state-of-
the-art solutions, the proposed algorithm has higher assembly
efficiency and relatively stable results with acceptable solving
times.
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