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Abstract—Printed circuit board assembly line scheduling
(PCBALS) is a difficult task in the electronic industry for
assembly lines using surface mounters, which is critical for
production efficiency. This is a special type of line optimization
problem that uses different allocation techniques, resulting in
wide differences in assembly times between machines. This article
proposes a hyper-heuristic optimizer embedded with a multi-
feature fusion ensemble estimator (HHO-MFFEE) for PCBALS
using linear-aligned-heads surface mounters. The objective and
constraints of the problem are discussed, and a min-max integer
model for small-scale problems is built. At the hyper-heuristic
low level, seven data- and target-driven heuristics are presented
for allocating components to different machines. Strategies for
duplicated conditions with component types and placement points
allocation are proposed to improve the applicability of the
algorithm and the quality of the solution. An ensemble assembly
time estimator that incorporates the coding of multi-features,
including estimated sub-objectives, is proposed for evaluating the
quality of the solution. Experimental results show that (1) the
gaps between the solution from HHO-MFFEE and the optimal
solution of the model are 3.44%∼7.28% for small-scale data; (2)
the proposed time estimator has higher accuracy than regression
and heuristic-based ones, with mean absolute error of 2.01%
and 3.43% for training and testing data, respectively; and (3)
HHO-MFFEE is better than other state-of-the-art algorithms,
with average improvement of 7.21%∼9.47%.

Index Terms—PCBA line optimization, hyper-heuristic, com-
ponent allocation balance, multi-feature fusion time estimator,
linear-aligned-heads surface mounter
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PRINTED circuit board (PCB) assembly, the process of
automatically mounting various electronic components

onto bare boards, is an important phase in the manufacturing of
electronic products, determining their overall quality. Surface
mounters with linear-aligned heads for improving efficiency
are widely deployed in PCB assembly lines. Manufacturers
tend to use multiple surface mounters in series to increase
productivity. However, they face difficulties in both the sched-
ule of a single machine and the optimization of the entire
line. The efficiency of single-machine scheduling affects the
search process for line optimization, which in turn decides
assembly tasks for single machines. Solving these two coupled
optimization problems poses a significant challenge.

A PCB assembly line (Fig. 1) consists of automatic equip-
ment, including a loader, screen printer, surface mounters, re-
flow furnace, automatic optical inspector (AOI), and unloader.
Screen printer applies solder paste to the surface of PCBs.
Surface mounters pick and place components on the PCB pads.
Reflow furnace melts solder paste, which has been already pre-
positioned on the pads, before cooling it to create a permanent
solder. Finally, AOI looks for defects on the PCB to ensure
assembly quality. Of all the equipment, the screen printer
applies solder paste faster, and the reflow furnace puts PCBs
continuously through the oven, which usually does not become
a bottleneck as it is not affected by the previous process.
Inspection equipment can take pictures of multiple placement
points simultaneously, and the computation time for detection
is negligible. In contrast, surface mounters, which need to
accurately pick and place hundreds of components, have a
direct impact on production efficiency. Central to production
control is the efficient use of machines, with surface mounters
being the bottleneck for assembly efficiency [1–3].

Surface mounters with linear-aligned heads are widely ap-
plied in PCB assembly lines. They consist of a stationary
platform, two stationary feeder bases, and a moving gantry
with multiple heads. The gantry moves between the PCBs
and the base and is fitted with heads assembled with suitable
nozzles from an automatic nozzle changer for picking and
placing different components. The linear-aligned design of the
heads is spaced in integer multiples of the slot intervals so
that heads can simultaneously pick up components from the
feeders on different slots. Compared with the rotary-head type,
the mechanical structure of linear-heads is simple and reliable,
with higher pickup efficiency, which can achieve high-speed,
high-precision assembly. The applicable types of component
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Fig. 1. PCB assembly line.

packages are also more diversified.
PCB assembly line scheduling (PCBALS) focuses on al-

locating components to multiple surface mounters in a pro-
duction line to improve assembly efficiency. The search for
complex feasible domains, which is an extension of the NP-
hard general production line optimization problem, is time-
consuming and intricate. The huge solution space requires
high-efficiency iterative searching, whereas the long time
required for single-machine optimization is inadequate for
evaluating each solution. Component allocation for the line
and time estimation for a single surface mounter are the main
tasks in PCBALS.

Extensive research has been conducted on the PCBALS
problem [2–4], and optimization for a single machine has been
thoroughly studied [5, 6]. Component allocation has been ex-
plored for both model-based [2, 7, 8] and heuristic-based [4, 9–
11] algorithms. Most time estimators are fitting-based, which
progressively evolved from the number of points to other
factors solved by heuristics, such as the number of assembly
cycles [2], nozzle changes [8] and feeder utilization [10].
However, most research to date has concentrated on the
optimization of lines with rotary-heads surface mounters [2–
4, 10], which differs from the structural design with linear-
aligned heads.

Heuristic algorithms have been well studied in the field
of assembly lines [12], disassembly lines [13] and parallel
machines optimization [14]. Hyper-heuristic algorithms are a
novel optimization framework that combines the advantages of
high- and low-level heuristics to adaptively solve a wide range
of complex optimization problems. They have been widely
applied for route scheduling [15], truck dispatching [16],
or flow shop scheduling [17], among other problems. The
estimation of assembly time has been studied with regression
fitting approaches [18–20]. Ensemble learning provides strong
nonlinear fitting capability, and it can have a high fitting
accuracy by designing extracted data features.

In this article, a hyper-heuristic load balancing algo-
rithm with a multi-feature fusion ensemble estimator (HHO-
MFFEE) is proposed for PCB assembly lines. Algorithm
design is tailored to the structural characteristics of linear-
aligned head surface mounters. The hyper-heuristic framework
applies techniques with domain knowledge, which results in
improved mechanisms for the search and evaluation process,
achieving accurate solution evaluation, efficient search pro-
cess, and balanced allocation results. Compared to state-of-
the-art algorithms and industrial solutions, the proposed HHO-
MFFEE achieves higher assembly efficiency. The contributions

of this article are summarized as follows:
1) A hyper-heuristic optimization method is proposed for

linear-aligned-heads surface mounter lines, which can
be applied to different scenarios in terms of component-
machine constraints, component duplication conditions,
or other factors.

2) A set of data- and target-driven low-level heuristics is
presented to search the solution space with high-quality
results.

3) An extraction method for data features is proposed, and
the features are fused within a multi-feature ensemble
time estimator, which makes the estimation more accu-
rate.

4) An aggregative grouping algorithm for duplicated com-
ponent points is proposed to improve the efficiency of
PCB assembly lines.

The rest of the article is organized as follows. Section II
reviews related work about PCBALS. Section III formulates
the mathematical model. The HHO-MFFEE is presented in
Section IV. Comparative experiments with other state-of-the-
art approaches are presented and discussed in Section V.
Finally, Section VI concludes the article.

II. LITERATURE REVIEW

Many studies have contributed to the optimization of PCB
assembly lines. This article targets the single-model case [21],
where a single PCB type is manufactured without line
changeover. This topic has been studied from modeling and
heuristic perspectives, with the sub-problems of component
allocation and placement sequence. In [22], the former has
been proven to be NP-complete, being the main research focus.

Although mathematical modeling can solve problems op-
timally, it is difficult to obtain mathematical expressions for
some real-world applications. Even when this is possible, their
implementation may require unacceptably high computational
complexity. The integrated model for changeable head config-
uration and component allocation presented in [2] is linearized
and includes a partial relaxation form to speed up the searching
process. A min-max approximation integer model with setup
and assembly times, as well as an efficient branch-and-bound-
based optimal algorithm, are introduced in [7]. As an extension
to [7], a mixed integer model with feeder module usage,
precedence, and component duplication constraints is proposed
in [23]. In [24] and [25], an expected value model and a fuzzy
goal model are built to deal with environmental uncertainties,
such as demand and machine breakdown, as a tradeoff between
optimality and stochasticity.
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Meta-heuristics are commonly applied in PCB assembly
line optimization. These include genetic algorithms [3, 4]
and hybrid spider monkey optimization (HSMO) [26, 27],
among others. In [3], a genetic algorithm to identify poten-
tial solutions for machine-specific component allocation and
placement sequence problems is presented. In [4], a hybrid
genetic algorithm is researched, which takes into account a
more general scenario of component duplication. The solution
is evaluated using a greedy heuristic for assigning nozzles
and headsets. An HSMO algorithm is developed in [26] to
solve component allocation and placement sequence problems
simultaneously. The problem is refined in [27] by incor-
porating a few extra features to optimize completion time,
energy consumption, and maintenance time. A combination
of an evolutionary algorithm and mathematical programming
to determine the optimal configuration of the type of surface
mounters in lines is presented in [28].

In addition, constructive heuristics based on intuition and
experience are proposed for PCB line optimization. In [9],
line assignment of modular surface mounters is divided into
three phases: head to module, component to head, and nozzle
to head. Heuristics, including random search, brute force, and
evolutionary algorithms, are applied in each phase. In [10],
a deterministic hierarchical heuristic is presented to solve the
problem at a lower level, allowing component duplication for
identical machines. In [29], assembly process decisions are de-
composed into four related sub-problems, and list-processing
algorithms for lines with dual-head surface mounters are
proposed.

Research has also been conducted to optimize the line as
part of multi-level production planning, consisting of PCB
assignment to the line, component allocation to machines,
and surface mounter optimization. An HSMO algorithm to
simultaneously solve the multi-level problems is presented
in [30]. Hierarchical heuristics are applied in [31] to solve
the problem through job partition, selection, grouping, load
balancing, and scheduling. In [32], a graph-based divide-and-
combine heuristic method is proposed to divide multiple PCBs
within a single product, and then sub-problems are solved with
standard solvers and meta-heuristics.

Component allocation depends on the assembly time of
surface mounters, and most research is based on estimators.
In [18], assembly time is estimated from the number of
component types and placement points using linear regression.
A regularized least-squares regression with a novel feature
solved using the nearest neighbor heuristic is proposed in [19].
A supported regression method combined with symbiotic
organism search is proposed in [20] to improve estimation ac-
curacy. Neural networks (NNs) have the ability to fit arbitrary
nonlinear functions. In [33], a multi-layer perceptron network
estimator is presented considering the component shape and
the area of the smallest rectangle around the component.

To summarize, the present research focuses more on rotary-
head surface mounter line optimization, which inspires us
to further optimize a line consisting of surface mounters
with special linear-aligned head structures in terms of search
capabilities and time estimation accuracy.

III. PROBLEM FORMULATION AND MODEL

A. Problem Formulation

PCBALS can be regarded as a special type of assembly
line optimization, known to be NP-hard. It has a higher
decision level and higher complexity compared with single-
machine problems. Production optimization of surface moun-
ters can be viewed as a combination of warehouse location,
task assignment, and route scheduling problems. There are
various combinations of component allocation among different
machines. Specifically, each assembly component may be
assigned to multi-candidate machines with different processing
times, resulting in exponential growth of the number of
feasible solutions.

Among the many factors that influence the efficiency of a
PCB assembly line, surface mounters take the longest time
to process, thus determining the efficiency of the entire line.
A variety of interdependent factors influence the assembly
efficiency of a single surface mount machine, including the
number of cycles, pick-ups, nozzle changes, and placement
points [5]. The result of component allocation affects the
above multiple sub-objectives. In terms of available resources,
assembly tools limit the upper number of assembly machines
for each component type, and the priority limits the assem-
bly sequence. Due to resource coupling and conflicting sub-
objectives, several local optimal solutions may exist in the
feasible domain.

Fig. 2 shows the main tasks and constraints affecting PCB
assembly line balancing, namely input, output, constraints,
estimator, and optimization tasks. The input is the PCB to
be assembled, which includes the component information of
the placement point. Constraints can be divided into ma-
chine configuration, assembly priority, and available tools. The
optimization task consists of two parts: line balancing and
assembly process optimization of surface mounter, which have
a coupled relationship. The former is generally regarded as the
input of the latter, and the latter is used to evaluate the quality
of the former solution. In the specific task allocation, the allo-
cation of assembly tools and components for lines determines
the head and feeder assignment of each component for surface
mounter, which further determines key performance indicators
affecting assembly efficiency. Assignment of placement points
in load balancing affects the quality of the assembly route
scheduling of the surface mounter, which also impacts overall
assembly efficiency. The complexity of the assembly tasks
makes it difficult to directly get productivity. An estimator
evaluates actual assembly time based on the operating process
of a single machine and guides line balancing.

Assembly process optimization focuses on performance im-
provement of individual machines through optimizing feeder
configuration, pickup operations, and movement path, among
other factors. Meanwhile, assembly line optimization focuses
on improving the efficiency of the bottleneck machine. Surface
mounter performance directly affects line efficiency, whereas
assembly task assignment affects machine utilization rate.
The large number of combinations for component allocation
makes it difficult to get high-quality solutions, and computing
effort increases rapidly as problems scale up, needing massive
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Fig. 2. Main tasks and constraints for PCB assembly line optimization.

resources even for small-scale data. For the unique mechanics
of linear-aligned heads, single-machine production simulations
with long running time, as well as traditional time estimators
with large errors are no longer applicable. In production line
optimization, it is necessary to reasonably allocate assembly
tasks of each mounter to balance load, which requires accu-
rate and fast estimation of the assembly process of surface
mounters.

B. Integer Programming Model

Notations used in the model are listed in Table I. In [6], an
integer model for head task assignment, including the major
factors that influence assembly efficiency, is proposed. Based
on it, a new approximation model is proposed that assesses
assembly line efficiency in terms of weighted metrics.

min max
m∈M

T1 ·
∑
k∈K

gkm + T2 ·
∑

k∈K\{|K|}

∑
h∈H

nkhm + T3·

∑
k∈K

wkm + T4 ·
∑
s∈S

∑
k∈K

eskm + T5 ·
∑
i∈I

∑
k∈K

∑
h∈H

uikhm

)
(1)

Objective (1) of the model is to minimize the maximum
weighted key assembly metrics among all machines, with
different weights T1 for assembly cycle, T2 for nozzle change,
T3 for pick-up movement, T4 for pick-up operations, and T5

for placement operations. As described below, Constraints (2)–
(6) are related to the configuration of a single surface mounter,
whereas Constraints (7)–(13) incorporate line optimization
factors. ∑

i∈I

uikhm ≤ gkm ∀k ∈ K,h ∈ H,m ∈ M (2)

nkhm =
∑
i∈I

∑
j∈J

∣∣ξij · uikhm − ξij · ui(k+1)hm

∣∣
∀k ∈ K\ {|K|} , h ∈ H,m ∈ M

(3)

eskm ≤
∑
h∈H

v[s+(h−1)·τ ]khm ≤ N · eskm

∀s ∈ S, k ∈ K,m ∈ M

(4)

wkm ≥ s · eskm − s′ · es′km +N · (eskm + es′km − 2)

∀k ∈ K,m ∈ M, s ∈ S, s′ ∈ S
(5)

TABLE I
NOTATIONS OF THE MODEL

Notation Description
Indices & Sets
i ∈ I Index of component type, I = {1, 2, · · · }
j ∈ J Index of nozzle type, J = {1, 2, · · · }
p ∈ P Index of points, P = {1, 2, · · · }
k ∈ K Index of cycle, K = {1, 2, · · · }
s ∈ S Index of slot, S = {1, 2, · · · }
h ∈ H Index of head, H = {1, 2, · · · }
m ∈M Index of surface mounter machine, M = {1, 2, · · · }
q ∈ Q Pair Index of assembly priority , Q = {(i, i′) , · · · }, i ∈ I ,

i′ ∈ I , which means component type i is assembled before
component type i′

Parameters
ϕi Number of placement points of component type i
θi Number of available feeders of component type i
ζj Number of available nozzles of type j
ξij = 1 iff. component type i is compatible with nozzle type

j (= 0, otherwise)
ηim = 1 iff. component type i is compatible with machine m

(= 0, otherwise)
µip = 1 iff. component type i is compatible with point p (= 0,

otherwise)
τ Interval ratio between adjacent heads to adjacent slots

T1 ∼ T5 Weights for assembly efficiency-related metrics
N A sufficiently large number

Decision Variables
gkm Binary variable, = 1 iff. any point is assembled in cycle k

of machine m
uikhm Binary variable, = 1 iff. component type i is assigned to

head h in cycle k of machine m
vskhm Binary variable, = 1 iff. head h picks up components from

slot s in cycle k of machine m
fism Binary variable, = 1 iff. component i is assigned to slot s

of machine m
eskm Binary variable, = 1 iff. component is picked up when the

left-most head aligns to slot s of machine m in cycle k
nkhm Binary variable, = 1 iff. head h of machine m changes

nozzles between cycles k and k + 1
rim Binary variable, = 1 iff. component type i is assembled by

machine m
wkm Integer variable, which indicates slots crossed by the gantry

during pick-up in cycle k of machine m

fism ≤
∑
k∈K

∑
h∈H

uikhm · vskhm ≤ N · fism

∀i ∈ I, s ∈ S,m ∈ M

(6)

∑
k∈K

∑
h∈H

∑
m∈M

xikhm = ϕi ∀i ∈ I (7)

∑
s∈S

∑
m∈M

fism ≤ θi ∀i ∈ I (8)

∑
m∈M

max
k∈K

∑
i∈I

∑
h∈H

ξij · uikhm ≤ ζj ∀j ∈ j (9)

rim ≤
∑
k∈K

∑
h∈H

xikhm ≤ N · rim ∀i ∈ I,m ∈ M (10)

rim ≤ ηim ∀i ∈ I,m ∈ M (11)

m−N · (1− rim) ≤ m′ +N · (1− ri′m′)

∀q = (i, i′) ∈ Q,m ∈ M,m′ ∈ M
(12)

max
k∈K,h∈H

k · xikhm +N · (rim + ri′m − 2) ≤ min
k∈K,h∈H

{k · xi′khm +N · (1− xi′khm)} ∀q = (i, i′) ∈ Q,m ∈ M
(13)
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The cycle of each machine with component assignment
is defined in Constraint (2). Constraint (3) calculates the
number of nozzle changes. Constraint (4) converts pick-up
slots to the left-most head-aligned one to get the number of
simultaneous pick-ups. Constraint (5) indicates the number of
slots through the pick-up movement. Constraint (6) represents
the relationship between component and feeder assignment.
More details about the relationship between decision variables
and tool constraints of a single machine can be found in [6].

Constraint (7) denotes all placement points that are assigned
to machines. Constraints (8) and (9) define the maximum num-
ber of machines the component can be assigned to, which is
limited by the number of feeders and nozzles. Constraint (10)
indicates the relationship between machine-assigned and head-
assigned components. Constraint (11) restricts the components
from being assigned to compatible machines. Constraints (12)
and (13) restrict the priority of the assembly process. The
former indicates that a component with a high priority cannot
be assigned to a machine later than a component with a low
priority, whereas the latter restricts the order in which two
components are assigned to the same machine.

IV. HHO-MFFEE

A. Solution Framework for the HHO-MFFEE Algorithm

As shown in Fig. 3, the proposed evolutionary-based HHO-
MFFEE is built from low-level heuristics and an estimator.
Component division and aggregated-based grouping algo-
rithms are designed for component duplication at the begin-
ning and end of the optimization. Multiple populations with
varying component allocation sequences iterate separately to
avoid allocation sequence limiting efficiency gains while pro-
viding multiple high-quality solutions for further evaluation.
The combination and execution order of low-level heuristics
are specified in the population-generating code. A multi-
feature fusion ensemble time estimator based on fully con-
nected NNs is proposed to calculate the fitness value of each
individual, fed with data and estimated sub-objectives. In the
iterative process, truncated crossover and mutation operations
are conducted on individuals. After the evolutionary process
is completed, placement points with the same component type
are segregated using an aggregated grouping algorithm.

B. Low-Level Heuristics for Component Allocation

Low-level heuristics (LLHs) are basic compositions of
hyper-heuristics. They can be divided into data- and target-
driven LLHs. The allocation sequence for components is preset
and heuristics are selected based on the allocated components.

Data-driven LLHs are connected to the number of points,
component type, and nozzle type, as follows: components are
allocated to the machine with minimum assigned placement
points (Minimum Points Heuristic), component types (Min-
imum Component Types Heuristic), nozzle types (Minimum
Nozzle Types Heuristic), and minimum ratio of number of
component types to nozzle types (Minimum Ratio Heuristic),
respectively.

Target-driven LLHs are related to assembly efficiency, and
key sub-objectives are extracted as a basis for component
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Fig. 3. Flowchart of the proposed HHO-MFFEE algorithm.

allocation. Instead of specific values, they compare relative
values of sub-objectives between surface mounters, which can
be evaluated without a specialized procedure. The number of
heads assigned to nozzle type j of machine m is denoted as
γjm, based on the cascade rounding method proposed in [34].
The target-driven LLHs are:

1) Minimum Cycle Heuristic, which allocates components
to the machine with the minimum cycle without nozzle
change, i.e.,

argminm∈M max
j∈J

(∑
i∈I

∑
k∈K

∑
h∈H

(ξij · uikhm) /γjm

)
(14)

2) Minimum Nozzle Change Heuristic, which allocates
components to the machine with the minimum proba-
bility of nozzle change, reflected in the mean squared
error of the points for each head, i.e.

arg min
m∈M

σ




γjm terms in total︷ ︸︸ ︷∑
i∈I

∑
k∈K

∑
h∈H

ξij · uikhm

γjm
| j ∈ J



(15)

where σ (·) denotes the mean square deviation of a set.
3) Minimum Pick-up Heuristic, which allocates compo-

nents to the machine with minimum pick-up operations.
Algorithm 1 presents a method to estimate the number of

pick-ups. A hierarchical greedy heuristic assigns components
to heads in decreasing order of the number of points, subject
to the number of heads accessible to the nozzle. Assigned
points of each component type for machine m are denoted
as ϕ′. Assignment of all attachable heads to each component
implies the start of a new cycle, and the number of pick-ups
equals the maximum number of points assigned to heads in
each cycle.

The number of component feeders and machine require-
ments restricts allocatable machines. All LLHs are based on a
set of feasible surface mounters. The set of assigned surface
mounters for each component type cannot exceed available
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feeders. The feasible set is adjusted based on component-
assigned mounters. When the number of assigned mounters
equals that of available feeders, the indices of assigned
mounters are regarded as the new feasible set. Component
prioritization needs to be checked first to see if the loop
is closed between constraint relationships and, if so, there
is no solution. Otherwise, if during component allocation, a
newly allocated component breaks the priority constraint, the
assigned components that do not satisfy the constraint rela-
tionship are replaced and reallocated with the same strategy.
The machine with the fewest points among LLHs with the
same evaluation value has the highest priority for assembling
components.

Algorithm 1: Hierarchical Greedy Head Assignment
Input : Nozzle heads γ, component points ϕ′

Output: Number of pick-up operations O
1 Set a 1× |J | vector L, a 1× |J | vector N , and a 1×

∑
i∈I ϕ

′
i

vector K of all zeros;
2 Sort i ∈ I decreasingly with ϕ′

i;
3 for i ∈ I do
4 j ←

∑
j′∈J ξij′ · j′ ; // assign nozzle j

compatible with component i
5 if Nj Mod γjm = 0 then
6 Lj ← Lj + 1; // nozzle allocation is full

and start a new cycle
7 end

/* Update maximum number of allocated points
and heads */

8 Set cycle index c← Lj , Kc ← max
(
Kc, ϕ′

i

)
, Nj ← Nj + 1

9 end

10 O ←
∑c=

∑
i∈I ϕ′

i
c=1 Kc

C. Hyper Heuristic for Line Optimization

In the evolutionary-based hyper-heuristic, each individual
gene correlates to an LLH denoted as a pattern. It operates
in a range of populations with various component allocation
sequences and individual genes of different lengths, increasing
search diversity. The length of genes is limited to the number
of component division groups. All individuals are initialized
with random lengths and pattern combinations. Cyclic access
is applied in individuals with short genes. Each one of the two
genes selects a split point and the crossover operator exchanges
gene segments. The mutation operator inserts randomly gen-
erated patterns at the split point. Truncated procedures are
applied to individuals whose length exceeds the limit value.
For each solution, the specific algorithm is executed on the
machine with the longest estimated time, reducing single-
machine optimizations and increasing solving efficiency.

D. Multi-Feature Fusion Ensemble Time Estimator

Ensemble learning with NNs performs well at fitting com-
plex and nonlinear data. Multi-feature of fitting data is related
to single-machine optimization. Simulated data are fed to the
network to ensure it is sufficiently trained. The complexity
of the PCB assembly process makes some properties difficult
to uncover. Therefore, a heuristic algorithm is proposed to
estimate performance metrics to improve fitting accuracy.

The framework of the estimator is shown in Fig. 4. Input
coding consists of three parts. Basic data are the total number
of placement points, component types, nozzle types, and board
size. The estimated number of cycles and pick-ups of the
preceding section, as well as nozzle change, builds the target
feature coding. Nozzle and component types are coded in
descending order based on the total number of points as
extended parts. Grouped components are the object of LLHs
allocation, which involves only the type of components and
the number of placement points. The independence of point
distribution is due to its coding difficulty and relatively small
impact on efficiency. A sufficiently long encoding is used to
ensure consistency across diverse data inputs to networks, with
redundant bits supplemented by zeros.

x1

x2

xN

Bagging Ensemble Learning

Input

PCB

Data

Heuristic

Estimator

q Num. of Pickups

q Num. of Nozzle 

Changes

q Num. of Cycles
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Training Evaluation

Model Output
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Base Model 2Subset 2

Training

Subsamping

Base-Model 5Subset 5

Training

Assembly

Time

Fig. 4. Framework of the multi-feature fusion ensemble time estimator.

The estimation of nozzle change probability cannot be
directly coded. Algorithm 2 proposes a computation heuristic
for it. Components with the same nozzle type are grouped
according to their respective nozzle heads. The group of
nozzle j of machine m is denoted as Gjm. Nozzle groups
are progressively assigned to heads, starting with empty heads
and proceeding sequentially to the heads with the fewest
points. When the allocation process is complete, the heads
with the most and least points are divided equally, which is
accepted if the efficiency gain from reducing the number of
cycles after equalization outweighs the efficiency loss from
increasing nozzle changes. This process is repeated to increase
the number of heads of the nozzle with the most head-averaged
points, and the total number of nozzle changes is recorded.

E. Heuristics for Component Duplication

Components with multi-available feeders can be assigned
to more than one surface mounter, which is called a dupli-
cated condition. To deal with this case, in this section the
algorithm is improved in two ways. Firstly, components are
grouped to meet the needs of distributing multiple machines.
Equation (16) gives threshold θ̂i, above which components
with more points are to be split.

θ̂i = max

(
ε ·
∑
i′∈I

θi′ · ϕi/
∑
i′∈I

ϕi′ , θi

)
∀i ∈ I (16)

where ε regulates the number of groups. This grouping strategy
balances search efficiency and diversity. Besides, the set of
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Algorithm 2: Nozzle Change Computation Heuristic
Input : Nozzle heads γ, component points ϕ
Output: Number of nozzle changes N∗

1 Set 1× |H| vector T of all zeros, 1× |H| vector N , V ← 0,
V ∗ ←∞ and N∗ ← 0;

2 while V ≤ V ∗ do
3 Set 1× γjm nozzle group Gjm with

∑
i∈I ϕi · ξij/γjm

points for j ∈ J ;
4 for n ∈ Gjm, j ∈ J do

/* assign nozzle groups to heads */
5 h← argminh′∈H {Th}, Nh ← j, Th ← Th + n
6 end
7 Set number of cycles V ← maxh∈H Th ;
8 while true do

/* balance the points of heads */
9 h′←argmaxh∈H Th , h′′←argminh∈H Th ;

10 if Nh′ = Nh′′ then
11 break;
12 end

/* compare the weighted metrics */
13 j′ ← Nh′ , H1 ← {h | Nh = j′, h ∈ H}, j′′ ← Nh′′ ,

H2 ← {h | Nh = j′′, h ∈ H}; if
T3 · (Th′ − Th′′ ) > T2 · ||H2| − |H1|| then

14 break;
15 end

/* update assignment result */
16 N ← ||H2| − |H1||,

V ← V − T3 · (Th′ − Th′′ ) + T2 ·N , T ′ ← T ;
17 for h ∈ H1 ∪H2 do
18 Th ←

∑
h′∈H1∪H2

T ′
h′/ (|H1|+ |H2|), Nh ← j′;

19 end
20 end
21 if V < V ∗ then
22 V ∗ ← V , N∗ ← N , γj′m ← γj′m + 1 ; // add

nozzle groups and re-allocate
23 end
24 end

feasible surface mounters is updated synchronously in the
allocation process.

Secondly, the distribution of points has an impact on as-
sembly efficiency, and an aggregative grouping is proposed
in Algorithm 3. Component allocation determines the upper
number of placement points of each type assigned to each
surface mounter. The initial aggregated center of each machine
is determined by the components with a single feeder. Current
research [5, 6] divides surface mounter optimization into head
task assignment and pick-and-place sequencing, where the
former determines the head-deviation h for the alignment of
the heads. The adjustment of the group center helps to shorten
the moving path of the linear head and improve assembly
efficiency.

V. COMPARATIVE EXPERIMENTS

A. Experimental Setup

Experiments have been carried out using a PC with an
Intel(R) Core(TM) i5-14600KF. Table II shows the parameter
settings of the hyper-heuristic and estimator. Iterations are
carried out across populations with ten randomly generated
component allocation sequences. The multiplier of component
grouping is set to 1.5. The time estimator is a two-middle-
layer fully connected NN with 1,000 neurons per layer and
ReLu is used as the activation function. Results are compared
for PCB assembly lines L1, L2, and L3, equipped with 2, 3,

Algorithm 3: Duplicated Component Points Alloca-
tion Algorithm

Input : Number of feeders θ, component-point compatibility µ,
points position (x, y), machine-component assignment u
and r

Output: Machine-allocated points P
1 Set machine-assigned sets Pm ← ∅, number of machine-head

assigned points Vihm ← 0 and head-derivation him ← 0,
∀i ∈ I, h ∈ H,m ∈M ;

2 Set ρh as the interval distance between head h and left-most head ;
3 for m ∈M do
4 for i ∈ {i′ | ri′m > 0, θi′ = 1, i′ ∈ I} do
5 Pm ← Pm ∪ {p | µip = 1, p ∈ P} ;
6 end
7 for i←

∑
i′∈I i

′ · ui′khm, k ∈ K, h ∈ H do
8 Vihm ← Vihm + 1, him ←(

1− 1/
∑

h∈H Vihm
)
· him + (h− 1) /

∑
h∈H Vihm

9 end
10 Set center points of each machine Xm ←

∑
p∈Pm

11
(
xp −

∑
i∈I µip · him

)
/ |Pm| ,Ym ←

∑
p∈Pm

yp/ |Pm| ;
12 end
13 while true do
14 X ← X , Y ← Y , V ← V , P ← P ;
15 for p ∈ {p′ | p′ ∈ Pi, θi > 1} , i ∈ I do
16 Set

(
m̂, ĥ

)
← argminm∈M,h∈H

{(
Xm − xp + ρh

)2
+

(
Ym − yp

)2 | Vihm > 0
}

as the allocated machine,

Pm̂ ← Pm̂ ∪ {p} , Viĥm̂ ← Viĥm̂ − 1 ;
/* update number of assigned points and

center of surface mounters */
17 X m̂ ← X m̂ +

(
xp −X m̂ − ρĥ

)
/
∣∣Pm̂

∣∣,
Ym̂ ← Ym̂ +

(
yp − Ym̂

)
/
∣∣Pm̂

∣∣;
18 end
19 if

∑
m∈M

(∣∣Xm −Xm

∣∣+ ∣∣Ym − Ym
∣∣) < 10−3 then

20 break;
21 end
22 end

TABLE II
HYPER-HEURISTIC AND ESTIMATOR PARAMETERS

Method Parameters Value

Hyper
Heuristic

Size of Population 10
Threshold Parameter 1.5

Num. of Individuals in Population 20
Crossover & Mutation Rate 0.6 & 0.1

Number of Iterations 50

Estimator
Learning Rate 10−5

Number of Epochs 8000

and 4 surface mounters, respectively. Fifteen PCB data from
actual manufacturing lines are used to evaluate the assembly
efficiency of the algorithm, with the first five being on a
smaller scale, as shown in Table III. As meta-heuristic results
are random, the average of the five runs is taken as the result.

Training and testing data for time estimation fitting are
randomly generated, and assembly times are obtained from
the built-in simulator of the surface mounter, which is accurate
for performing optimization and full assembly process simu-
lation. The distribution of placement points impacts assembly
efficiency. Training data with either sparse or concentrated
distribution can reduce the generalization performance of the
estimator, which can be refined by fitting randomly generated
points with relatively uniform distribution. Table IV shows
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TABLE III
STATISTICAL PCB DATA

PCB 1-1 1-2 1-3 1-4 1-5 2-1 2-2 2-3 2-4 2-5 2-6 2-7 2-8 2-9 2-10
Num. of Comp. Type 4 4 5 5 5 16 29 7 24 45 7 47 40 10 40
Num. of Nozzle Type 3 3 3 2 2 3 3 3 3 4 4 4 2 3 4

Number of Points 28 34 34 30 30 78 165 192 236 209 320 390 546 720 1510
Number of Feeders 10 6 8 7 5 19 30 12 28 47 14 54 50 19 40

TABLE IV
PARAMETERS OF TRAINING AND TESTING DATA

Training
Sets

# of Samples Outlier (%) Mean Median
2000 11.25 128.67 130.13

Minimum Maximum Std. Dev
2.71 302.94 71.67

Testing
Sets

# of Samples Outlier (%) Mean Median
400 10.75 126.76 127.11

Minimum Maximum Std. Dev
3.80 311.38 72.23

statistical PCB data. Data outliers are detected and removed
using the inter-quartile range rule [20] with a multiplier
of 0.6. Training and testing data have similar distribution
characteristics.

B. Comparison of HHO-MFFEE and Mathematical Model

Mathematical programming is used to find optimal so-
lutions, but only for small-scale data. In this section, the
solutions obtained by HHO-MFFEE are compared with the
approximated optimal solutions of the model, which is built
by extracting key metrics that affect assembly efficiency. The
model is validated using the Gurobi solver [35]. To make the
model linear and solvable, it is assumed that enough nozzles
are available. In addition, placement priority constraints are
ignored. The weights of the model are set using a linear fit to
the training data, with T1 = 0.041, T2 = 0.326, T3 = 0.870,
T4 = 0.159 and T5 = 0.015. The effect of the layout of
points on assembly efficiency is ignored. Table V presents the
comparison of the first five data. TM and TH represent the
weighted performance metrics of the model and the proposed
algorithm, respectively. Gap δT = (TH/TM − 1) · 100% with
respect to the optimal solution of the model is 7.28%, 6.58%,
and 3.44% on average in 3 assembly lines. Comparison with
the model reveals that the proposed algorithm is close to
the optimal solution, with a maximum gap of 12.10%. The
performance of the hyper-heuristic algorithm is comparable to
that of the model solution, and its higher solving efficiency
makes it possible to apply it to larger-scale data.

C. Evaluation of the Proposed Time Estimator

The accuracy of the time estimator impacts the search
direction for component allocation, as well as the quality of
solutions. In this subsection, four different time estimators are
compared with the proposed one, which yields E1. E2 refers to
the ensemble fitting method using basic parameters, without
the target related terms, which is another way of encoding.

TABLE V
WEIGHTED KEY METRICS INDICATORS OF THE MATHEMATICAL MODEL

AND THE PROPOSED HHO-MFFEE ALGORITHM

Line
L1 L2 L3

TM TH δT (%) TM TH δT (%) TM TH δT (%)

1-1 2.585 2.626 1.59 1.758 1.837 4.49 1.676 1.813 8.17
1-2 3.286 3.672 11.75 2.785 3.122 12.10 2.473 2.514 1.66
1-3 2.719 2.998 10.26 2.218 2.445 10.23 1.947 2.054 5.50
1-4 2.744 3.017 9.95 2.202 2.314 5.09 2.202 2.243 1.86
1-5 2.933 3.017 2.86 2.432 2.456 0.99 2.432 2.432 0.00
Avg 7.28 6.58 3.44

TABLE VI
ESTIMATED ACCURACY OF THE TESTED ALGORITHMS

Set Parameters E1 E2 E3 E4 E5

Training
Mean Absolute Error (%) 2.01 5.09 8.75 8.75 45.30
Max. Absolute Error (%) 18.80 21.28 37.61 37.68 214.94

Testing
Mean Absolute Error (%) 3.43 5.16 9.41 9.44 45.99
Max. Absolute Error (%) 16.57 18.65 27.65 28.82 183.98

Results for the heuristic estimators proposed in [4] and [9]
are denoted as E3 and E4, respectively, with coefficients
computed using the least squares method. E5 refers to an
ensemble algorithm with symbiotic organism search-based
support vector regression (SOS-based SVR) [20].

Mean and maximum absolute errors of training and testing
data are listed in Table VI. The performance of the fitting
method on the testing set is the basis for evaluating the
accuracy of the estimators. The two NN-related methods pro-
vide better time estimation. The proposed estimator encoding
method reduces the average absolute error on the testing set
from 5.16% to 3.43%, compared to simply feeding basic
parameters. The number of pick-ups is not incorporated in
the two heuristic-based linear regression fittings, resulting in
poorly fitted results with mean absolute errors of 9.41% and
9.44%, respectively. Despite being effective in the workshop
production line of the PCB assembly process, the SOS-based
SVR has the lowest fitting accuracy, as it ignores the distinctive
properties of each single PCB.

D. Comparison of Low-level Heuristics

Ten PCBs are used to compare the performances of individ-
ual LLHs in L2. Table VII shows optimization results of load
allocation. Ap, An, Ac and Ar are the data-driven LLHs, i.e.,
Minimum Points, Minimum Nozzle Types, Minimum Compo-
nent Types, and Minimum Ratio, respectively. Ak, Ag and Au
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TABLE VII
SOLUTIONS OBTAINED BY VARIOUS LLHS

PCB Ap An Ac Ar Ak Ag Au

2-1 10.06 10.26 9.52 9.88 9.72 9.79 10.70
2-2 15.38 18.28 16.12 19.97 14.75 17.66 16.01
2-3 20.46 20.48 20.00 23.06 20.10 22.81 19.18
2-4 18.98 25.97 19.87 26.24 21.17 27.06 22.84
2-5 22.36 28.25 26.14 29.64 21.13 32.34 22.94
2-6 28.81 35.23 28.79 38.40 28.78 33.84 27.69
2-7 46.21 45.29 40.47 51.13 42.57 45.42 43.27
2-8 52.07 59.06 50.44 59.39 51.73 63.46 49.05
2-9 66.93 67.80 65.82 84.64 65.98 68.50 65.42

2-10 135.68 143.67 143.01 168.83 139.76 146.01 149.82

 !

"

Fig. 5. Ratio of each LLH when using the hyper-heuristic.

are the target-driven LLHs, i.e., Minimum Cycle, Minimum
Nozzle Change, and Minimum Pick-up, respectively. Both Ap

and Ak achieve higher assembly efficiency by more balanced
cycles and placement points. Results of LLHs that indirectly
affect efficiency or single-objective related have low efficiency.
All single-LLHs fail to achieve the hyper-heuristic effect.

The ratio of each LLH when using the hyper-heuristic is
shown in Fig. 5. Balancing the number of placement points
among surface mounters is the main task of optimization. The
ratio of target-driven operators is higher than that of data-
driven ones in the remaining LLHs. Nozzle change-related
term Ag occurs less frequently in the assembly process. Thus,
for most data, the pickup-related Au is more relevant in the
search process.

E. Comparison with Other Algorithms

The main task of the line optimizer is to allocate compo-
nents to machines. In this subsection, the proposed algorithm
is compared with three state-of-the-art solutions, namely an
industrial solver released in 2022 by an advanced manu-
facturer, the integrated algorithm [4], and the hybrid algo-
rithm [9]. The industrial solver is an optimizer embedded in
an integrated production line management tool for surface-
mount assembly lines. The integrated algorithm is a genetic-
based method that provides solutions for PCB assembly
lines by designing operators to search the feasible domain.
The hybrid algorithm combines random search, local search,
and evolutionary algorithms, among others. Since the spider

monkey algorithm has been widely used in PCB assembly
line optimization [26, 27, 36], this section further integrates
it into the hybrid framework and improves it based on the
coding and searching approaches proposed in [27, 36]. The
industrial solver provides complete solutions from assembly
line balancing to surface mounter optimization, and the rest
of the single-machine optimizations are based on the methods
proposed in [6].

Table VIII shows the optimization results of the four tested
algorithms. The proposed hyper-heuristic algorithm outper-
forms the industrial solver, and the hybrid and integrated algo-
rithms by 7.21%, 8.67%, and 9.47%, respectively. In addition,
the distribution of the optimization results in three assembly
lines are shown in Fig. 6. In algorithms with randomized
results, the hyper-heuristic produces a more consistent result.
In most cases, the results of a single run of the hyper-heuristic
outperform those of the other methods. Even if it produces
some weaker solutions, the vast majority of them outperform
the best solutions from the other methods.

F. Analysis of Solving Efficiency

Solving efficiency is one of the most important performance
indicators for large-scale combinatorial optimization problems.
Solving times for PCBALS using three of the tested algorithms
are shown in Table IX. The industrial solver is not included
in the comparison, because it is built into a runtime software
package, which includes importing data, optimizing, and out-
putting results, so its solving times cannot be separated from
the rest for fair comparison. The hybrid algorithm consists
of relatively basic operators, which allow it to search quickly
at the cost of solution quality. The hyper-heuristic and inte-
grated algorithms use a more complex time-fitting approach
and account for component duplication, resulting in longer
times than that of the hybrid algorithm. The proposed HHO-
MFFEE is more efficient than the integrated algorithm, and
the quality of the solution it provides is higher. Evaluating
the quality of the candidate solutions takes a large part of the
solving time of the hyper-heuristic. PCB2-5 and PCB2-10 are
more complex. Single-machine optimization takes longer for
PCBs with a larger number of components and nozzle types,
resulting in relatively poor solving efficiency. By shortening
the execution time of surface mounter optimization, efficiency
may be further increased.

VI. CONCLUSION

This article presents HHO-MFFEE, a hyper-heuristic op-
timization method for PCBALS with a multi-feature fusion
ensemble time estimator. The hyper-heuristic algorithm is
implemented using data- and target-driven LLHs. A min-
max mathematical model is built covering the major assembly
efficiency metrics. In terms of solution quality, the proposed
method has comparable performance to the optimal one ob-
tained by the model when dealing with small-scale data. The
strategies for component duplication divide components of
the same type, balancing assembly time between machines
and improving assembly efficiency. An aggregated grouping
algorithm assigns placement points to the specific surface
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TABLE VIII
ASSEMBLY TIMES OF THE TESTED ALGORITHMS

Hyper Heuristic Industrial Solver Hybrid Algorithm Integrated Algorithm
PCB L1 L2 L3 L1 L2 L3 δ (%) L1 L2 L3 δ (%) L1 L2 L3 δ (%)
2-1 10.14 8.06 6.21 12.91 8.41 6.56 12.46 10.91 9.42 7.17 13.28 14.97 8.41 6.83 20.66
2-2 19.55 14.28 11.61 20.78 14.75 12.95 7.01 19.89 14.93 12.42 4.42 20.61 14.75 12.35 5.01
2-3 21.15 18.06 12.59 21.19 18.77 14.44 6.26 23.39 18.26 14.92 10.06 23.18 18.77 14.72 10.14
2-4 26.10 17.85 13.87 26.29 18.66 13.96 1.95 28.14 19.17 14.38 6.30 29.37 18.66 14.86 8.06
2-5 27.86 19.33 15.35 32.32 19.59 15.79 6.75 33.48 21.29 16.89 13.46 32.57 19.59 16.66 8.95
2-6 38.63 26.53 22.83 44.42 27.91 23.02 7.00 39.11 27.34 22.44 0.86 45.05 27.91 24.22 9.30
2-7 50.15 34.12 26.23 53.91 36.93 26.85 6.04 58.73 40.79 29.72 16.66 57.76 36.93 31.32 14.28
2-8 71.32 48.08 39.42 73.96 51.16 40.18 4.01 72.02 51.91 40.28 3.70 75.09 51.16 42.76 6.72
2-9 85.69 60.91 46.07 91.18 63.91 52.57 8.48 94.66 66.08 53.05 11.36 91.95 63.91 47.10 4.82

2-10 176.99 117.93 90.78 179.94 125.79 116.23 12.12 185.07 128.07 96.73 6.57 188.01 125.79 97.54 6.78
Avg 7.21 8.67 9.47
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Fig. 6. Distribution of optimization results of the tested algorithms on three PCB assembly lines.

TABLE IX
SOLVING TIMES OF THE TESTED ALGORITHMS

Hyper Heuristic Hybrid Algorithm Integrated Algorithm
PCB L1 L2 L3 L1 L2 L3 L1 L2 L3
2-1 17.28 20.95 24.26 15.84 18.97 21.69 54.13 59.35 62.99
2-2 33.98 31.35 30.71 63.45 63.70 68.54 64.05 68.51 75.21
2-3 13.98 15.62 19.64 26.56 32.01 37.27 50.74 54.99 63.95
2-4 21.51 23.73 26.20 9.31 11.08 12.26 64.05 68.17 76.23
2-5 100.22 81.51 87.45 23.49 28.06 32.57 85.59 90.02 96.65
2-6 21.32 18.32 21.74 49.13 56.61 65.24 63.57 67.34 73.92
2-7 93.22 70.93 68.72 12.80 14.17 16.01 100.31 96.79 104.06
2-8 40.19 42.99 38.08 55.18 59.92 65.67 91.20 95.64 104.69
2-9 29.20 27.52 30.12 40.48 48.99 55.56 89.30 92.85 101.16

2-10 135.98 76.67 76.71 25.48 24.94 24.90 144.55 155.60 171.15

mounters. The proposed time estimators have high fitting
accuracy, and coding with approximated sub-objectives fur-
ther enhances fitting accuracy. The combination of the high
accuracy of the estimator with the hyper-heuristic search ca-
pability for large domains results in high-quality solutions for
PCBALS problems. Compared with industrial solutions and
other state-of-the-art algorithms, the proposed one achieves
higher assembly efficiency and stable results with acceptable

solving times.
Future research will focus on load balancing optimization

of flexible PCB assembly lines. For high-mix, low-volume
PCB production tasks, its efficiency is affected by the con-
figuration adjustments of surface mounters. This involves the
optimization of the scheduling of dynamic production tasks,
and enhancing the efficiency of the feeder module changeover,
among others, which is beneficial to shorten the productive
cycle and reduce storage cost, so that small- and medium-
batches can achieve profitability comparable to that of mass
manufacturing, and improve the efficiency, robustness, and
stability of the assembly line.
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