Compare commits
2 Commits
292e31bd8d
...
429a62a245
Author | SHA1 | Date | |
---|---|---|---|
429a62a245 | |||
ef5480b44f |
58
dijkstra.cpp
58
dijkstra.cpp
@ -1,35 +1,35 @@
|
||||
class Solution {
|
||||
public:
|
||||
int diskstra(vector<vector<int>>& edges, int n, int start, int end) {
|
||||
vector<vector<int>> graph(n, vector<int>(n, INT_MAX / 2));
|
||||
// === 建图 ===
|
||||
for (auto& [from, to, dist]: edges) {
|
||||
graph[from][to] = dist;
|
||||
}
|
||||
int diskstra(vector<vector<int>>& edges, int n, int start, int end) {
|
||||
vector<vector<int>> graph(n, vector<int>(n, INT_MAX / 2));
|
||||
for (auto& edge : edges) {
|
||||
int from = edge[0], to = edge[1], dist = edge[2];
|
||||
graph[from][to] = dist; // build the graph
|
||||
}
|
||||
|
||||
vector<int> distance(n, INT_MAX/2), visited(n, 0);
|
||||
distance[start] = 0;
|
||||
while (true) {
|
||||
int next_node = -1;
|
||||
for (int node = 0; node < n; node++) {
|
||||
if (visited[node]) {
|
||||
continue; // 不重复更新
|
||||
}
|
||||
if (next_node < 0 || distance[next_node] > distance[node]) {
|
||||
next_node = node; // 寻找移动路径最小的节点
|
||||
}
|
||||
}
|
||||
vector<int> distance(n, INT_MAX / 2), visited(n, 0);
|
||||
distance[start] = 0;
|
||||
while (true) {
|
||||
int next_node = -1;
|
||||
for (int node = 0; node < n; node++) {
|
||||
if (visited[node]) {
|
||||
continue; // update non-repeatedly
|
||||
}
|
||||
if (next_node < 0 || distance[next_node] > distance[node]) {
|
||||
next_node = node; // find the node with the smallest moving path
|
||||
}
|
||||
}
|
||||
|
||||
if (next_node < 0 || distance[next_node] == INT_MAX / 2) {
|
||||
break; // 找不到节点
|
||||
}
|
||||
if (next_node < 0 || distance[next_node] == INT_MAX / 2) {
|
||||
break; // cannot find the node
|
||||
}
|
||||
|
||||
visited[next_node] = 1;
|
||||
for (int node = 0; node < n; node++) {
|
||||
// 根据最近节点路径更新其余节点移动路径
|
||||
distance[node] = min(distance[node], distance[next_node] + graph[next_node][node]);
|
||||
}
|
||||
}
|
||||
return distance[end] == INT_MAX / 2 ? -1 : distance[end];
|
||||
}
|
||||
visited[next_node] = 1;
|
||||
for (int node = 0; node < n; node++) {
|
||||
// update the moving paths of the remaining nodes based on the nearest node
|
||||
distance[node] = min(distance[node], distance[next_node] + graph[next_node][node]);
|
||||
}
|
||||
}
|
||||
return distance[end] == INT_MAX / 2 ? -1 : distance[end];
|
||||
}
|
||||
};
|
114
minimum-spanning-tree.cpp
Normal file
114
minimum-spanning-tree.cpp
Normal file
@ -0,0 +1,114 @@
|
||||
class MST
|
||||
{
|
||||
/**
|
||||
* Minumum Spanning Tree
|
||||
*
|
||||
*/
|
||||
|
||||
private:
|
||||
vector<int> _pre; // pre-node
|
||||
vector<int> _size; // size of node
|
||||
|
||||
/*!
|
||||
* @brief : finding function of union set
|
||||
* @param [x] : node index
|
||||
* @retval : parent node
|
||||
*/
|
||||
int find(int x)
|
||||
{
|
||||
if (_pre[x] == x)
|
||||
return x;
|
||||
_pre[x] = find(_pre[x]);
|
||||
return _pre[x];
|
||||
}
|
||||
public:
|
||||
/*!
|
||||
* @brief : prim minimum spanning tree algorithm
|
||||
* @param [num_nodes] : number of nodes
|
||||
* @param [connections] : inter-node connection distance [start<72><74>end<6E><64>distance]
|
||||
* @retval : minimum weighted-sum
|
||||
*/
|
||||
int prim(int num_nodes, vector<vector<int>>& connections)
|
||||
{
|
||||
vector<vector<pair<int, int>>> edges(n);
|
||||
for (size_t i = 0; i < connections.size(); i++) {
|
||||
int city_a = connections[i][0], city_b = connections[i][1];
|
||||
int cost = connections[i][2];
|
||||
edges[city_a].push_back(make_pair(city_b, cost));
|
||||
edges[city_b].push_back(make_pair(city_a, cost));
|
||||
}
|
||||
set<int> intree; // set of visited node
|
||||
vector<pair<int, int>> out_edges; // external edge
|
||||
out_edges.push_back(make_pair(0, 0)); // target node
|
||||
|
||||
int ans = 0;
|
||||
|
||||
// iterate over all outward expanding edges until all nodes are visited
|
||||
while (out_edges.size() != 0 && intree.size() != num_nodes)
|
||||
{
|
||||
// find the edge with minimal weight
|
||||
vector<pair<int, int>>::iterator iter = min_element(out_edges.begin(), out_edges.end(), [&](pair<int, int>& elem1, pair<int, int>elem2)
|
||||
{
|
||||
return elem1.second < elem2.second;
|
||||
|
||||
});
|
||||
pair<int, int> out_edge = *iter;
|
||||
out_edges.erase(iter);
|
||||
|
||||
// add unvisited node
|
||||
if (intree.find(out_edge.first) == intree.end())
|
||||
{
|
||||
intree.insert(out_edge.first);
|
||||
ans += out_edge.second;
|
||||
for (pair<int, int> edge : edges[out_edge.first])
|
||||
{
|
||||
out_edges.push_back(make_pair(edge.first, edge.second));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (intree.size() != num_nodes)
|
||||
return -1; // not exist if two nodes is not connected
|
||||
return ans;
|
||||
}
|
||||
|
||||
|
||||
/*!
|
||||
* @brief : Kruskal MST algorithm
|
||||
* @param [num_nodes] : Number of nodes
|
||||
* @param [connections] : Inter-node connection distance [start<72><74>end<6E><64>distance]
|
||||
* @retval : Minimum weighted-sum
|
||||
*/
|
||||
int kruskal(int numNodes, vector<vector<int>>& connections)
|
||||
_pre.resize(numNodes), _size.resize(numNodes, 1);
|
||||
iota(_pre.begin(), _pre.end(), 0);
|
||||
|
||||
// sort with the distance
|
||||
sort(connections.begin(), connections.end(), [&](vector<int>& elem1, vector<int>& elem2) {
|
||||
return elem1.at(2) < elem2.at(2);
|
||||
});
|
||||
|
||||
int ans = 0; // minimum weighted-sum
|
||||
int edge_count = 0; // number of visited nodes
|
||||
for (size_t i = 0; i < connections.size(); i++) {
|
||||
int x = find(connections[i][0]), y = find(connections[i][1]);
|
||||
|
||||
// Union find set
|
||||
if (x != y) {
|
||||
if (_size[x] > _size[y]) {
|
||||
swap(x, y);
|
||||
}
|
||||
|
||||
_pre[x] = y;
|
||||
_size[y] += _size[x];
|
||||
ans += connections[i][2];
|
||||
edge_count++;
|
||||
if (edge_count == numNodes - 1) {
|
||||
return ans;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return -1; // not exist if two nodes is not connected
|
||||
}
|
||||
};
|
72
topological-sorting.cpp
Normal file
72
topological-sorting.cpp
Normal file
@ -0,0 +1,72 @@
|
||||
class Solution
|
||||
{
|
||||
private:
|
||||
enum class STATUS
|
||||
{
|
||||
UN_VISITED,
|
||||
IN_SEARCHING,
|
||||
FINISHED
|
||||
};
|
||||
|
||||
vector<vector<int>> edges;
|
||||
vector<Status> visited;
|
||||
vector<int> sequence;
|
||||
|
||||
bool find_cycle = false; // cycle
|
||||
|
||||
/**
|
||||
* @brief deep first search
|
||||
* @param[in] node index
|
||||
*
|
||||
*/
|
||||
void deepFirstSearch(int node)
|
||||
{
|
||||
visited[node] = Status::SEARCHING;
|
||||
for (int neighbor : edges[node]) {
|
||||
if (visited[neighbor] == Status::UNVISITED) {
|
||||
deepFirstSearch(neighbor);
|
||||
if (find_cycle) {
|
||||
return; // unsolvable
|
||||
}
|
||||
}
|
||||
else if (visited[neighbor] == Status::SEARCHING) {
|
||||
find_cycle = true;
|
||||
return;
|
||||
}
|
||||
}
|
||||
visited[node] = Status::FINISH;
|
||||
sequence.push_back(node);
|
||||
}
|
||||
|
||||
public:
|
||||
/**
|
||||
* @brief topological sequence
|
||||
* @param[in] number of nodes
|
||||
* @param[in] node connection
|
||||
* @retval sequence
|
||||
*/
|
||||
vector<int> findTopologicalOrder(int numNodes, vector<vector<int>>& linkage)
|
||||
{
|
||||
edges.resize(numNodes);
|
||||
visited.resize(numNodes, Status::UNVISITED);
|
||||
|
||||
// generate adjacency list
|
||||
for (const auto& info : linkage) {
|
||||
edges[info[1]].push_back(info[0]);
|
||||
}
|
||||
|
||||
// deep first search to determine the topological sequence
|
||||
for (int i = 0; i < numNodes && !find_cycle; ++i) {
|
||||
if (visited[i] == Status::UNVISITED) {
|
||||
deepFirstSearch(i);
|
||||
}
|
||||
}
|
||||
|
||||
if (find_cycle) {
|
||||
return vector<int>(); // unsolvable for cycle
|
||||
}
|
||||
|
||||
reverse(sequence.begin(), sequence.end());
|
||||
return sequence;
|
||||
}
|
||||
};
|
36
union-find-sets.cpp
Normal file
36
union-find-sets.cpp
Normal file
@ -0,0 +1,36 @@
|
||||
class UnionFind {
|
||||
vector<int> _pre; // 代表元
|
||||
vector<int> _rank; // 集合的秩
|
||||
|
||||
public:
|
||||
UnionFind(int n) : _pre(n), _rank(n, 1) {
|
||||
iota(_pre.begin(), _pre.end(), 0);
|
||||
//ranges::iota(_pre, 0);
|
||||
}
|
||||
|
||||
int find(int x) {
|
||||
return _pre[x] == x ? x : _pre[x] = find(_pre[x]);
|
||||
}
|
||||
|
||||
bool same(int x, int y) {
|
||||
return find(x) == find(y);
|
||||
}
|
||||
|
||||
bool merge(int from, int to) {
|
||||
int x = find(from), y = find(to);
|
||||
if (x == y) {
|
||||
return false;
|
||||
}
|
||||
if (_rank[x] < _rank[y]) {
|
||||
_pre[x] = y;
|
||||
}
|
||||
else if (_rank[x] > _rank[y]) {
|
||||
_pre[y] = x;
|
||||
}
|
||||
else {
|
||||
_pre[x] = y;
|
||||
_rank[y]++;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
};
|
@ -1,36 +0,0 @@
|
||||
class UnionFind {
|
||||
vector<int> _pre; // 代表元
|
||||
vector<int> _rank; // 集合的秩
|
||||
|
||||
public:
|
||||
UnionFind(int n) : _pre(n), _rank(n, 1), cc(n) {
|
||||
// iota(fa.begin(), fa.end(), 0);
|
||||
ranges::iota(fa, 0);
|
||||
}
|
||||
|
||||
int find(int x) {
|
||||
return _pre[x] == x ? x : _pre[x] = fint(_pre[x]);
|
||||
}
|
||||
|
||||
bool same(int x, int y) {
|
||||
return find(x) == find(y);
|
||||
}
|
||||
|
||||
bool merge(int from, int to) {
|
||||
int x = find(from), y = find(to);
|
||||
if (x == y) {
|
||||
return false; //同一集合不做合并
|
||||
}
|
||||
if (_rank[x] < _rank[y]) {
|
||||
_pre[x] = y;
|
||||
}
|
||||
else if (_rank[x] > _rank[y]) {
|
||||
_pre[y] = x;
|
||||
}
|
||||
else {
|
||||
_pre[x] = y;
|
||||
_rank[y]++;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
};
|
Reference in New Issue
Block a user