添加拓扑排序、最小生成树算法

This commit is contained in:
2025-06-06 10:48:29 +08:00
parent ef5480b44f
commit 429a62a245
2 changed files with 186 additions and 0 deletions

114
minimum-spanning-tree.cpp Normal file
View File

@ -0,0 +1,114 @@
class MST
{
/**
* Minumum Spanning Tree
*
*/
private:
vector<int> _pre; // pre-node
vector<int> _size; // size of node
/*!
* @brief : finding function of union set
* @param [x] : node index
* @retval : parent node
*/
int find(int x)
{
if (_pre[x] == x)
return x;
_pre[x] = find(_pre[x]);
return _pre[x];
}
public:
/*!
* @brief : prim minimum spanning tree algorithm
* @param [num_nodes] : number of nodes
* @param [connections] : inter-node connection distance [start<72><74>end<6E><64>distance]
* @retval : minimum weighted-sum
*/
int prim(int num_nodes, vector<vector<int>>& connections)
{
vector<vector<pair<int, int>>> edges(n);
for (size_t i = 0; i < connections.size(); i++) {
int city_a = connections[i][0], city_b = connections[i][1];
int cost = connections[i][2];
edges[city_a].push_back(make_pair(city_b, cost));
edges[city_b].push_back(make_pair(city_a, cost));
}
set<int> intree; // set of visited node
vector<pair<int, int>> out_edges; // external edge
out_edges.push_back(make_pair(0, 0)); // target node
int ans = 0;
// iterate over all outward expanding edges until all nodes are visited
while (out_edges.size() != 0 && intree.size() != num_nodes)
{
// find the edge with minimal weight
vector<pair<int, int>>::iterator iter = min_element(out_edges.begin(), out_edges.end(), [&](pair<int, int>& elem1, pair<int, int>elem2)
{
return elem1.second < elem2.second;
});
pair<int, int> out_edge = *iter;
out_edges.erase(iter);
// add unvisited node
if (intree.find(out_edge.first) == intree.end())
{
intree.insert(out_edge.first);
ans += out_edge.second;
for (pair<int, int> edge : edges[out_edge.first])
{
out_edges.push_back(make_pair(edge.first, edge.second));
}
}
}
if (intree.size() != num_nodes)
return -1; // not exist if two nodes is not connected
return ans;
}
/*!
* @brief : Kruskal MST algorithm
* @param [num_nodes] : Number of nodes
* @param [connections] : Inter-node connection distance [start<72><74>end<6E><64>distance]
* @retval : Minimum weighted-sum
*/
int kruskal(int numNodes, vector<vector<int>>& connections)
_pre.resize(numNodes), _size.resize(numNodes, 1);
iota(_pre.begin(), _pre.end(), 0);
// sort with the distance
sort(connections.begin(), connections.end(), [&](vector<int>& elem1, vector<int>& elem2) {
return elem1.at(2) < elem2.at(2);
});
int ans = 0; // minimum weighted-sum
int edge_count = 0; // number of visited nodes
for (size_t i = 0; i < connections.size(); i++) {
int x = find(connections[i][0]), y = find(connections[i][1]);
// Union find set
if (x != y) {
if (_size[x] > _size[y]) {
swap(x, y);
}
_pre[x] = y;
_size[y] += _size[x];
ans += connections[i][2];
edge_count++;
if (edge_count == numNodes - 1) {
return ans;
}
}
}
return -1; // not exist if two nodes is not connected
}
};